These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16196873)

  • 1. Step-controlled strain relaxation in the vicinal surface epitaxy of nitrides.
    Huang XR; Bai J; Dudley M; Wagner B; Davis RF; Zhu Y
    Phys Rev Lett; 2005 Aug; 95(8):086101. PubMed ID: 16196873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Peculiarities of Strain Relaxation in GaN/AlN Superlattices Grown on Vicinal GaN (0001) Substrate: Comparative XRD and AFM Study.
    Kuchuk AV; Kryvyi S; Lytvyn PM; Li S; Kladko VP; Ware ME; Mazur YI; Safryuk NV; Stanchu HV; Belyaev AE; Salamo GJ
    Nanoscale Res Lett; 2016 Dec; 11(1):252. PubMed ID: 27184965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain accommodation in Ga-assisted GaAs nanowires grown on silicon (111).
    Biermanns A; Breuer S; Trampert A; Davydok A; Geelhaar L; Pietsch U
    Nanotechnology; 2012 Aug; 23(30):305703. PubMed ID: 22751267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and Stress Properties of AlGaN Epilayers Grown on AlN-Nanopatterned Sapphire Templates by Hydride Vapor Phase Epitaxy.
    Tasi CT; Wang WK; Ou SL; Huang SY; Horng RH; Wuu DS
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30201865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate effects on the strain relaxation in GaN/AlN short-period superlattices.
    Kladko V; Kuchuk A; Lytvyn P; Yefanov O; Safriuk N; Belyaev A; Mazur YI; Decuir EA; Ware ME; Salamo GJ
    Nanoscale Res Lett; 2012 Jun; 7(1):289. PubMed ID: 22672771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-ordering of nanofacets on vicinal SiC surfaces.
    Nakagawa H; Tanaka S; Suemune I
    Phys Rev Lett; 2003 Nov; 91(22):226107. PubMed ID: 14683256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect structure in heteroepitaxial semipolar (1122) (Ga, Al)N.
    Arroyo Rojas Dasilva Y; Chauvat MP; Ruterana P; Lahourcade L; Monroy E; Nataf G
    J Phys Condens Matter; 2010 Sep; 22(35):355802. PubMed ID: 21403298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote epitaxy using graphene enables growth of stress-free GaN.
    Journot T; Okuno H; Mollard N; Michon A; Dagher R; Gergaud P; Dijon J; Kolobov AV; Hyot B
    Nanotechnology; 2019 Dec; 30(50):505603. PubMed ID: 31530744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiral growth and formation of stacking faults and vacancy islands during molecular beam epitaxy of InN on GaN(0001).
    Liu Y; Li L
    Nanotechnology; 2011 Oct; 22(42):425707. PubMed ID: 21941037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aberration-corrected STEM study of structural defects in epitaxial GaN thin films grown by ion beam assisted MBE.
    Poppitz D; Lotnyk A; Gerlach JW; Lenzner J; Grundmann M; Rauschenbach B
    Micron; 2015 Jun; 73():1-8. PubMed ID: 25846303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of stress-driven composition evolution during hetero-epitaxy in a ternary AlGaN system.
    He C; Qin Z; Xu F; Zhang L; Wang J; Hou M; Zhang S; Wang X; Ge W; Shen B
    Sci Rep; 2016 Apr; 6():25124. PubMed ID: 27112969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CBED study of grain misorientations in AlGaN epilayers.
    Sahonta SL; Cherns D; Liu R; Ponce FA; Amano H; Akasaki I
    Ultramicroscopy; 2005 Apr; 103(1):23-32. PubMed ID: 15777597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural investigation of highly ordered catalyst- and mask-free GaN nanorods.
    Figge S; Aschenbrenner T; Kruse C; Kunert G; Schowalter M; Rosenauer A; Hommel D
    Nanotechnology; 2011 Jan; 22(2):025603. PubMed ID: 21139192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain Release in GaN Epitaxy on 4° Off-Axis 4H-SiC.
    Feng S; Zheng Z; Cheng Y; Ng YH; Song W; Chen T; Zhang L; Liu K; Cheng K; Chen KJ
    Adv Mater; 2022 Jun; 34(23):e2201169. PubMed ID: 35366019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structural properties of GaN/AlN core-shell nanocolumn heterostructures.
    Hestroffer K; Mata R; Camacho D; Leclere C; Tourbot G; Niquet YM; Cros A; Bougerol C; Renevier H; Daudin B
    Nanotechnology; 2010 Oct; 21(41):415702. PubMed ID: 20844326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compositional modulation in In(x)Ga(1-x)N: TEM and X-ray studies.
    Liliental-Weber Z; Zakharov DN; Yu KM; Ager JW; Walukiewicz W; Haller EE; Lu H; Schaff WJ
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):243-50. PubMed ID: 16123056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition and strain relaxation of In
    Soundararajah QY; Webster RF; Griffiths IJ; Novikov SV; Foxon CT; Cherns D
    Nanotechnology; 2018 Oct; 29(40):405706. PubMed ID: 30010093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ analysis of strain relaxation during catalyst-free nucleation and growth of GaN nanowires.
    Knelangen M; Consonni V; Trampert A; Riechert H
    Nanotechnology; 2010 Jun; 21(24):245705. PubMed ID: 20484796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors.
    Ihlefeld JF; Tian W; Liu ZK; Doolittle WA; Bernhagen M; Reiche P; Uecker R; Ramesh R; Schlom DG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1528-33. PubMed ID: 19686967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial Modulated Lattice-Polarity-Controlled Epitaxy of III-Nitride Heterostructures on Si(111).
    Wang P; Wang D; Mondal S; Wu Y; Ma T; Mi Z
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15747-15755. PubMed ID: 35333528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.