These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16197007)

  • 41. The fracture mechanics of fatigue crack propagation in compact bone.
    Wright TM; Hayes WC
    J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Uncommon deformation mechanisms during fatigue-crack propagation in nanocrystalline alloys.
    Cheng S; Lee SY; Li L; Lei C; Almer J; Wang XL; Ungar T; Wang Y; Liaw PK
    Phys Rev Lett; 2013 Mar; 110(13):135501. PubMed ID: 23581334
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The true toughness of human cortical bone measured with realistically short cracks.
    Koester KJ; Ager JW; Ritchie RO
    Nat Mater; 2008 Aug; 7(8):672-7. PubMed ID: 18587403
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.
    Dauskardt RH; Ritchie RO; Takemoto JK; Brendzel AM
    J Biomed Mater Res; 1994 Jul; 28(7):791-804. PubMed ID: 8083247
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transonic and Supershear Crack Propagation Driven by Geometric Nonlinearities.
    Pundir M; Adda-Bedia M; Kammer DS
    Phys Rev Lett; 2024 May; 132(22):226102. PubMed ID: 38877945
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic crack tip equation of motion: high-speed oscillatory instability.
    Bouchbinder E
    Phys Rev Lett; 2009 Oct; 103(16):164301. PubMed ID: 19905697
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Local thermomechanical analysis of a microphase-separated thin lamellar PS-b-PEO film.
    Rice RH; Mokarian-Tabari P; King WP; Szoszkiewicz R
    Langmuir; 2012 Sep; 28(37):13503-11. PubMed ID: 22924663
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Why is nacre strong? II. Remaining mechanical weakness for cracks propagating along the sheets.
    Okumura K
    Eur Phys J E Soft Matter; 2002 Apr; 7(4):303-10. PubMed ID: 27638161
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characteristic Tearing Energy and Fatigue Crack Propagation of Filled Natural Rubber.
    Rong J; Yang J; Huang Y; Luo W; Hu X
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833190
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Confining crack propagation in defective graphene.
    López-Polín G; Gómez-Herrero J; Gómez-Navarro C
    Nano Lett; 2015 Mar; 15(3):2050-4. PubMed ID: 25710766
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative in Situ SEM High Cycle Fatigue: The Critical Role of Oxygen on Nanoscale-Void-Controlled Nucleation and Propagation of Small Cracks in Ni Microbeams.
    Barrios A; Gupta S; Castelluccio GM; Pierron ON
    Nano Lett; 2018 Apr; 18(4):2595-2602. PubMed ID: 29489378
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of Strain-Induced Crystallization on Fast Crack Growth in Stretched
    Osumi R; Yasui T; Tanaka R; Mai TT; Takagi H; Shimizu N; Tsunoda K; Sakurai S; Urayama K
    ACS Macro Lett; 2022 Jun; 11(6):747-752. PubMed ID: 35608107
    [No Abstract]   [Full Text] [Related]  

  • 53. Breakdown of linear elastic fracture mechanics near the tip of a rapid crack.
    Livne A; Bouchbinder E; Fineberg J
    Phys Rev Lett; 2008 Dec; 101(26):264301. PubMed ID: 19437643
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Atomistic Study of the Stress Corrosion Cracking in Graphene.
    Elapolu MSR; Tabarraei A
    J Phys Chem A; 2020 Sep; 124(35):7060-7070. PubMed ID: 32786986
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].
    Yuan SF; Jin X; Qiu L; Huang HM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):724-9. PubMed ID: 26117887
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage.
    Rack A; Scheel M; Danilewsky AN
    IUCrJ; 2016 Mar; 3(Pt 2):108-14. PubMed ID: 27006774
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Failing softly: a fracture theory of highly-deformable materials.
    Goldman Boué T; Harpaz R; Fineberg J; Bouchbinder E
    Soft Matter; 2015 May; 11(19):3812-21. PubMed ID: 25857951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Brittle fracture in viscoelastic materials as a pattern-formation process.
    Fleck M; Pilipenko D; Spatschek R; Brener EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046213. PubMed ID: 21599276
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements.
    Vashishth D
    J Biomech; 2004 Jun; 37(6):943-6. PubMed ID: 15111083
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-speed holographic microscopy for fast-propagating cracks in transparent materials.
    Suzuki S; Nozaki Y; Kimura H
    Appl Opt; 1997 Oct; 36(28):7224-33. PubMed ID: 18264231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.