These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16197024)

  • 1. Streaming currents in a single nanofluidic channel.
    van der Heyden FH; Stein D; Dekker C
    Phys Rev Lett; 2005 Sep; 95(11):116104. PubMed ID: 16197024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power generation by pressure-driven transport of ions in nanofluidic channels.
    van der Heyden FH; Bonthuis DJ; Stein D; Meyer C; Dekker C
    Nano Lett; 2007 Apr; 7(4):1022-5. PubMed ID: 17352506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Streaming current and wall dissolution over 48 h in silica nanochannels.
    Andersen MB; Bruus H; Bardhan JP; Pennathur S
    J Colloid Interface Sci; 2011 Aug; 360(1):262-71. PubMed ID: 21546029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetic flow-induced currents in silica nanofluidic channels.
    Choi YS; Kim SJ
    J Colloid Interface Sci; 2009 May; 333(2):672-8. PubMed ID: 19251271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model.
    Chang CC; Yang RJ
    J Colloid Interface Sci; 2009 Nov; 339(2):517-20. PubMed ID: 19712936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of electrokinetic transport in silica nanofluidic channels.
    Wang M; Kang Q; Ben-Naim E
    Anal Chim Acta; 2010 Apr; 664(2):158-64. PubMed ID: 20363398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroviscous effects in nanofluidic channels.
    Wang M; Chang CC; Yang RJ
    J Chem Phys; 2010 Jan; 132(2):024701. PubMed ID: 20095688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-charge-governed ion transport in nanofluidic channels.
    Stein D; Kruithof M; Dekker C
    Phys Rev Lett; 2004 Jul; 93(3):035901. PubMed ID: 15323836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge inversion at high ionic strength studied by streaming currents.
    van der Heyden FH; Stein D; Besteman K; Lemay SG; Dekker C
    Phys Rev Lett; 2006 Jun; 96(22):224502. PubMed ID: 16803311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Integrated Glass Nanofluidic Device Enabling In-situ Electrokinetic Probing of Water Confined in a Single Nanochannel under Pressure-Driven Flow Conditions.
    Xu Y; Xu B
    Small; 2015 Dec; 11(46):6165-71. PubMed ID: 26485695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.
    Gillespie D; Pennathur S
    Anal Chem; 2013 Mar; 85(5):2991-8. PubMed ID: 23368674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streaming potential generated by a long viscous drop in a capillary.
    Sherwood JD
    Langmuir; 2008 Sep; 24(18):10011-8. PubMed ID: 18712893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced Top-Down Fabrication for a Fused Silica Nanofluidic Device.
    Morikawa K; Kazoe Y; Takagi Y; Tsuyama Y; Pihosh Y; Tsukahara T; Kitamori T
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33182488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofluidic Charge Transport under Strong Electrostatic Coupling Conditions.
    Buyukdagli S
    J Phys Chem B; 2020 Dec; 124(49):11299-11309. PubMed ID: 33231451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate measurement of liquid transport through nanoscale conduits.
    Alibakhshi MA; Xie Q; Li Y; Duan C
    Sci Rep; 2016 Apr; 6():24936. PubMed ID: 27112404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the surface functionalization and the electrolyte concentration on the electrical conductance of silica nanochannels.
    Martins DC; Chu V; Conde JP
    Biomicrofluidics; 2013; 7(3):34111. PubMed ID: 24404031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zeta potential determination by streaming current modelization and measurement in electrophoretic microfluidic systems.
    Renaud L; Kleimann P; Morin P
    Electrophoresis; 2004 Jan; 25(1):123-7. PubMed ID: 14730576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetics of diffuse soft interfaces. IV. Analysis of streaming current measurements at thermoresponsive thin films.
    Duval JF; Zimmermann R; Cordeiro AL; Rein N; Werner C
    Langmuir; 2009 Sep; 25(18):10691-703. PubMed ID: 19518102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetics of a poly(N-isopropylacrylamid-co-carboxyacrylamid) soft thin film: evidence of diffuse segment distribution in the swollen state.
    Zimmermann R; Kuckling D; Kaufmann M; Werner C; Duval JF
    Langmuir; 2010 Dec; 26(23):18169-81. PubMed ID: 21043444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters.
    Chanda S; Sinha S; Das S
    Soft Matter; 2014 Oct; 10(38):7558-68. PubMed ID: 25112236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.