These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16197031)

  • 1. Nanowire acting as a superconducting quantum interference device.
    Johansson A; Sambandamurthy G; Shahar D; Jacobson N; Tenne R
    Phys Rev Lett; 2005 Sep; 95(11):116805. PubMed ID: 16197031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum interference device made by DNA templating of superconducting nanowires.
    Hopkins DS; Pekker D; Goldbart PM; Bezryadin A
    Science; 2005 Jun; 308(5729):1762-5. PubMed ID: 15961664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative Magnetoresistance in Amorphous Indium Oxide Wires.
    Mitra S; Tewari GC; Mahalu D; Shahar D
    Sci Rep; 2016 Nov; 6():37687. PubMed ID: 27876859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetotransport Properties in High-Quality Ultrathin Two-Dimensional Superconducting Mo2C Crystals.
    Wang L; Xu C; Liu Z; Chen L; Ma X; Cheng HM; Ren W; Kang N
    ACS Nano; 2016 Apr; 10(4):4504-10. PubMed ID: 27065100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superconducting properties of tungsten nanowires fabricated using focussed ion beam technique.
    Aloysius RP; Husale S; Kumar A; Ahmad F; Gangwar AK; Papanai GS; Gupta A
    Nanotechnology; 2019 Oct; 30(40):405001. PubMed ID: 31247608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconducting nanowire quantum interference device based on Nb ultrathin films deposited on self-assembled porous Si templates.
    Cirillo C; Prischepa SL; Trezza M; Bondarenko VP; Attanasio C
    Nanotechnology; 2014 Oct; 25(42):425205. PubMed ID: 25277511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodic magnetoresistance oscillations induced by superconducting vortices in single crystal Au nanowires.
    He L; Wang J
    Nanotechnology; 2011 Nov; 22(44):445704. PubMed ID: 21975607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coulomb blockade and BLOCH oscillations in superconducting Ti nanowires.
    Lehtinen JS; Zakharov K; Arutyunov KY
    Phys Rev Lett; 2012 Nov; 109(18):187001. PubMed ID: 23215316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for macroscopic quantum tunneling of phase slips in long one-dimensional superconducting Al wires.
    Altomare F; Chang AM; Melloch MR; Hong Y; Tu CW
    Phys Rev Lett; 2006 Jul; 97(1):017001. PubMed ID: 16907397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluctuation conductivity of thin films and nanowires near a parallel-field-tuned superconducting quantum phase transition.
    Lopatin AV; Shah N; Vinokur VM
    Phys Rev Lett; 2005 Jan; 94(3):037003. PubMed ID: 15698309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Axis Vector Nano Superconducting Quantum Interference Device.
    Martínez-Pérez MJ; Gella D; Müller B; Morosh V; Wölbing R; Sesé J; Kieler O; Kleiner R; Koelle D
    ACS Nano; 2016 Sep; 10(9):8308-15. PubMed ID: 27332709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of critical currents of superconducting aluminum nanowires in external magnetic fields: evidence for a Weber blockade.
    Morgan-Wall T; Leith B; Hartman N; Rahman A; Marković N
    Phys Rev Lett; 2015 Feb; 114(7):077002. PubMed ID: 25763970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cryogen-free ultralow-field superconducting quantum interference device magnetic resonance imaging system.
    Eom BH; Penanen K; Hahn I
    Rev Sci Instrum; 2014 Sep; 85(9):094302. PubMed ID: 25273745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Little-Parks oscillations in an insulator.
    Kopnov G; Cohen O; Ovadia M; Lee KH; Wong CC; Shahar D
    Phys Rev Lett; 2012 Oct; 109(16):167002. PubMed ID: 23215116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet.
    Takeda K; Mori H; Yamaguchi A; Ishimoto H; Nakamura T; Kuriki S; Hozumi T; Ohkoshi S
    Rev Sci Instrum; 2008 Mar; 79(3):033909. PubMed ID: 18377027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconductivity-related insulating behavior.
    Sambandamurthy G; Engel LW; Johansson A; Shahar D
    Phys Rev Lett; 2004 Mar; 92(10):107005. PubMed ID: 15089232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of bacteria in suspension by using a superconducting quantum interference device.
    Grossman HL; Myers WR; Vreeland VJ; Bruehl R; Alper MD; Bertozzi CR; Clarke J
    Proc Natl Acad Sci U S A; 2004 Jan; 101(1):129-34. PubMed ID: 14688406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-fluxon controlled resistance switching in centimeter-long superconducting gallium-indium eutectic nanowires.
    Zhao W; Bischof JL; Hutasoit J; Liu X; Fitzgibbons TC; Hayes JR; Sazio PJ; Liu C; Jain JK; Badding JV; Chan MH
    Nano Lett; 2015 Jan; 15(1):153-8. PubMed ID: 25426926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superconducting junction of a single-crystalline au nanowire for an ideal Josephson device.
    Jung M; Noh H; Doh YJ; Song W; Chong Y; Choi MS; Yoo Y; Seo K; Kim N; Woo BC; Kim B; Kim J
    ACS Nano; 2011 Mar; 5(3):2271-6. PubMed ID: 21355535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meissner effect measurement of single indium particle using a customized on-chip nano-scale superconducting quantum interference device system.
    Wu L; Chen L; Wang H; Liu X; Wang Z
    Sci Rep; 2017 Apr; 7():45945. PubMed ID: 28374779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.