BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16197213)

  • 1. Bond- and site-selective loss of H- from pyrimidine bases.
    Ptasińska S; Denifl S; Grill V; Märk TD; Illenberger E; Scheier P
    Phys Rev Lett; 2005 Aug; 95(9):093201. PubMed ID: 16197213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective bond cleavage in potassium collisions with pyrimidine bases of DNA.
    Almeida D; Ferreira da Silva F; García G; Limão-Vieira P
    Phys Rev Lett; 2013 Jan; 110(2):023201. PubMed ID: 23383904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete-active-space second-order perturbation theory (CASPT2//CASSCF) study of the dissociative electron attachment in canonical DNA nucleobases caused by low-energy electrons (0-3 eV).
    Francés-Monerris A; Segarra-Martí J; Merchán M; Roca-Sanjuán D
    J Chem Phys; 2015 Dec; 143(21):215101. PubMed ID: 26646889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The electron affinities of deprotonated adenine, guanine, cytosine, uracil, and thymine.
    Chen EC; Wiley JR; Chen ES
    Nucleosides Nucleotides Nucleic Acids; 2008 May; 27(5):506-24. PubMed ID: 18569789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrational Feshbach resonances in uracil and thymine.
    Burrow PD; Gallup GA; Scheer AM; Denifl S; Ptasinska S; Märk T; Scheier P
    J Chem Phys; 2006 Mar; 124(12):124310. PubMed ID: 16599677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electron affinities of the radicals formed by the loss of an aromatic hydrogen atom from adenine, guanine, cytosine, uracil, and thymine.
    Chen ES; Chen EC; Sane N
    Biochem Biophys Res Commun; 1998 May; 246(1):228-30. PubMed ID: 9600097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microhydration Prevents Fragmentation of Uracil and Thymine by Low-Energy Electrons.
    Kočišek J; Pysanenko A; Fárník M; Fedor J
    J Phys Chem Lett; 2016 Sep; 7(17):3401-5. PubMed ID: 27525662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-atom abstraction from the adenine-uracil base pair.
    Kim S; Meehan T; Schaefer HF
    J Phys Chem A; 2007 Jul; 111(29):6806-12. PubMed ID: 17388361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the Watson-Crick, wobble, and sugar-edge hydrogen bond sites of uracil and thymine.
    Müller A; Frey JA; Leutwyler S
    J Phys Chem A; 2005 Jun; 109(23):5055-63. PubMed ID: 16833858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bond selective dissociative electron attachment to thymine.
    Ptasińska S; Denifl S; Mróz B; Probst M; Grill V; Illenberger E; Scheier P; Märk TD
    J Chem Phys; 2005 Sep; 123(12):124302. PubMed ID: 16392477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures and energetics of the deprotonated adenine-uracil base pair, including proton-transferred systems.
    Kim S; Lind MC; Schaefer HF
    J Phys Chem B; 2008 Mar; 112(11):3545-51. PubMed ID: 18303886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bond breaking and temporary anion states in uracil and halouracils: implications for the DNA bases.
    Scheer AM; Aflatooni K; Gallup GA; Burrow PD
    Phys Rev Lett; 2004 Feb; 92(6):068102. PubMed ID: 14995278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution photoelectron spectra of the pyrimidine-type nucleobases.
    Fulfer KD; Hardy D; Aguilar AA; Poliakoff ED
    J Chem Phys; 2015 Jun; 142(22):224310. PubMed ID: 26071713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen bonds of RNA are stronger than those of DNA, but NMR monitors only presence of methyl substituent in uracil/thymine.
    Swart M; Fonseca Guerra C; Bickelhaupt FM
    J Am Chem Soc; 2004 Dec; 126(51):16718-9. PubMed ID: 15612698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and Substantial DNA Lesions From Near 0 eV Electron-Induced Decay of the O4-Hydrogenated Thymine Nucleotides: A DFT Study.
    Wang S; Zhang C; Zhao P; Bu Y
    J Phys Chem B; 2015 Nov; 119(44):13971-9. PubMed ID: 26441346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of hydrated Li+-thymine and Li+-uracil complexes by IRMPD spectroscopy in the N-H/O-H stretching region.
    Gillis EA; Rajabi K; Fridgen TD
    J Phys Chem A; 2009 Feb; 113(5):824-32. PubMed ID: 19175333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uracil and thymine reactivity in the gas phase: the S(N)2 reaction and implications for electron delocalization in leaving groups.
    Zhachkina A; Lee JK
    J Am Chem Soc; 2009 Dec; 131(51):18376-85. PubMed ID: 19928991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvation of nucleobases in 1,3-dialkylimidazolium acetate ionic liquids: NMR spectroscopy insights into the dissolution mechanism.
    Araújo JM; Ferreira R; Marrucho IM; Rebelo LP
    J Phys Chem B; 2011 Sep; 115(36):10739-49. PubMed ID: 21806017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of proton transport tautomerism in clusters of protonated nucleic acid bases (cytosine, uracil, thymine, and adenine) and ammonia by high-pressure mass spectrometry and ab initio calculations.
    Wu R; McMahon TB
    J Am Chem Soc; 2007 Jan; 129(3):569-80. PubMed ID: 17227020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron accommodation dynamics in the DNA base thymine.
    King SB; Stephansen AB; Yokoi Y; Yandell MA; Kunin A; Takayanagi T; Neumark DM
    J Chem Phys; 2015 Jul; 143(2):024312. PubMed ID: 26178110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.