These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16197217)

  • 1. Poincaré recurrence and measure of hyperbolic and nonhyperbolic chaotic attractors.
    Baptista MS; Kraut S; Grebogi C
    Phys Rev Lett; 2005 Aug; 95(9):094101. PubMed ID: 16197217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrence time statistics for finite size intervals.
    Altmann EG; da Silva EC; Caldas IL
    Chaos; 2004 Dec; 14(4):975-81. PubMed ID: 15568910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles.
    Dhamala M; Lai YC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):6176-9. PubMed ID: 11970527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poincaré recurrences from the perspective of transient chaos.
    Altmann EG; Tél T
    Phys Rev Lett; 2008 May; 100(17):174101. PubMed ID: 18518290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peculiarities of the relaxation to an invariant probability measure of nonhyperbolic chaotic attractors in the presence of noise.
    Anishchenko VS; Vadivasova TE; Kopeikin AS; Kurths J; Strelkova GI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036206. PubMed ID: 11909211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of noise on statistical properties of nonhyperbolic attractors.
    Anishchenko VS; Kopeikin AS; Vadivasova TE; Strelkova GI; Kurths J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):7886-93. PubMed ID: 11138070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators.
    Grines EA; Kazakov A; Sataev IR
    Chaos; 2022 Sep; 32(9):093105. PubMed ID: 36182377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic bursting at the onset of unstable dimension variability.
    Viana RL; Pinto SE; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046213. PubMed ID: 12443305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors.
    Kantz H; Grebogi C; Prasad A; Lai YC; Sinde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026209. PubMed ID: 11863634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple returns for some regular and mixing maps.
    Haydn N; Lunedei E; Rossi L; Turchetti G; Vaienti S
    Chaos; 2005 Sep; 15(3):33109. PubMed ID: 16252983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stickiness in mushroom billiards.
    Altmann EG; Motter AE; Kantz H
    Chaos; 2005 Sep; 15(3):33105. PubMed ID: 16252979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits.
    Gonchenko SV; Shil'nikov LP; Turaev DV
    Chaos; 1996 Mar; 6(1):15-31. PubMed ID: 12780232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition to intermittent chaotic synchronization.
    Zhao L; Lai YC; Shih CW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036212. PubMed ID: 16241553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaotic spectroscopy.
    Doron E; Smilansky U
    Chaos; 1992 Jan; 2(1):117-124. PubMed ID: 12779958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational mechanics of molecular systems: Quantifying high-dimensional dynamics by distribution of Poincaré recurrence times.
    Ryabov V; Nerukh D
    Chaos; 2011 Sep; 21(3):037113. PubMed ID: 21974676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation.
    Isaeva OB; Kuznetsov SP; Mosekilde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016228. PubMed ID: 21867294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cycling chaotic attractors in two models for dynamics with invariant subspaces.
    Ashwin P; Rucklidge AM; Sturman R
    Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On a simple recursive control algorithm automated and applied to an electrochemical experiment.
    Rhode MA; Rollins RW; Dewald HD
    Chaos; 1997 Dec; 7(4):653-663. PubMed ID: 12779691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation of unstable periodic orbits and the stickiness in the two-dimensional piecewise linear map.
    Akaishi A; Shudo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066211. PubMed ID: 20365258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological aspects of the structure of chaotic attractors in R3.
    Tsankov TD; Gilmore R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056206. PubMed ID: 15244903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.