These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 16197226)

  • 1. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors.
    Engheta N; Salandrino A; Alù A
    Phys Rev Lett; 2005 Aug; 95(9):095504. PubMed ID: 16197226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials.
    Engheta N
    Science; 2007 Sep; 317(5845):1698-702. PubMed ID: 17885123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials in optical metatronic circuit networks.
    Abbasi F; Engheta N
    Opt Express; 2014 Oct; 22(21):25109-19. PubMed ID: 25401543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance matching via ultrathin metatronic layer assisted by Smith Chart.
    Sun W; Qin X; Li H; Zhou Z; Li Y
    Opt Express; 2022 Jul; 30(14):25567-25580. PubMed ID: 36237084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring subwavelength phase differences with a plasmonic circuit--an example of nanoscale optical signal processing.
    Eftekhari F; Gómez DE; Davis TJ
    Opt Lett; 2014 May; 39(10):2994-7. PubMed ID: 24978256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.
    Jin Y
    Acc Chem Res; 2014 Jan; 47(1):138-48. PubMed ID: 23992824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocapacitive circuit elements.
    Zareie HM; Morgan SW; Moghaddam M; Maaroof AI; Cortie MB; Phillips MR
    ACS Nano; 2008 Aug; 2(8):1615-9. PubMed ID: 19206363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interacting plasmonic nanostructures beyond the quasi-static limit: a "circuit" model.
    Zheng X; Verellen N; Volskiy V; Valev VK; Baumberg JJ; Vandenbosch GA; Moshchalkov VV
    Opt Express; 2013 Dec; 21(25):31105-18. PubMed ID: 24514685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials.
    Ross MB; Blaber MG; Schatz GC
    Nat Commun; 2014 Jun; 5():4090. PubMed ID: 24934374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared metatronic nanocircuits by design.
    Caglayan H; Hong SH; Edwards B; Kagan CR; Engheta N
    Phys Rev Lett; 2013 Aug; 111(7):073904. PubMed ID: 23992069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optically Left-Handed Nanopearl Beads with Inductance-Capacitance Circuits at Visible-Near-Infrared Frequencies Based on Scalable Methods.
    Pyun SB; Kim MG; Kim SW; Song JE; Jeon HI; Kim S; Park SJ; Cho EC
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):7121-7129. PubMed ID: 35099922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators.
    Cui Y; Zeng C
    Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bottom-up assembly of colloidal gold and silver nanostructures for designable plasmonic structures and metamaterials.
    Gwo S; Lin MH; He CL; Chen HY; Teranishi T
    Langmuir; 2012 Jun; 28(24):8902-8. PubMed ID: 22372768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid organic-inorganic, rod-shaped nanoresistors and diodes.
    Park S; Chung SW; Mirkin CA
    J Am Chem Soc; 2004 Sep; 126(38):11772-3. PubMed ID: 15382894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of top-down nanomachining on electrical conduction properties of TiO2 nanostructure-based chemical sensors.
    Francioso L; De Pascali C; Capone S; Siciliano P
    Nanotechnology; 2012 Mar; 23(9):095302. PubMed ID: 22327322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circuit optomechanics: concepts and materials.
    Pernice WH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1889-98. PubMed ID: 25389167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofabricated media with negative permeability at visible frequencies.
    Grigorenko AN; Geim AK; Gleeson HF; Zhang Y; Firsov AA; Khrushchev IY; Petrovic J
    Nature; 2005 Nov; 438(7066):335-8. PubMed ID: 16292306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cascaded optical field enhancement in composite plasmonic nanostructures.
    Kravets VG; Zoriniants G; Burrows CP; Schedin F; Casiraghi C; Klar P; Geim AK; Barnes WL; Grigorenko AN
    Phys Rev Lett; 2010 Dec; 105(24):246806. PubMed ID: 21231549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-domain discrete-dipole approximation for simulation of temporal response of plasmonic nanoparticles.
    Kim KH; Yurkin MA
    Opt Express; 2015 Jun; 23(12):15555-64. PubMed ID: 26193535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.