These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16197235)

  • 1. Electron emission from diamondoids: a diffusion quantum Monte Carlo study.
    Drummond ND; Williamson AJ; Needs RJ; Galli G
    Phys Rev Lett; 2005 Aug; 95(9):096801. PubMed ID: 16197235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory.
    Demján T; Vörös M; Palummo M; Gali A
    J Chem Phys; 2014 Aug; 141(6):064308. PubMed ID: 25134572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum nuclear dynamics in the photophysics of diamondoids.
    Patrick CE; Giustino F
    Nat Commun; 2013; 4():2006. PubMed ID: 23756460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Monte Carlo calculations of nanostructure optical gaps: application to silicon quantum dots.
    Williamson AJ; Grossman JC; Hood RQ; Puzder A; Galli G
    Phys Rev Lett; 2002 Nov; 89(19):196803. PubMed ID: 12443140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasiparticle electronic structure and optical absorption of diamond nanoparticles from ab initio many-body perturbation theory.
    Yin H; Ma Y; Hao X; Mu J; Liu C; Yi Z
    J Chem Phys; 2014 Jun; 140(21):214315. PubMed ID: 24908016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable boron nitride diamondoids as nanoscale materials.
    Fyta M
    Nanotechnology; 2014 Sep; 25(36):365601. PubMed ID: 25121522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Kohn-Sham density of states and band gap of water: from small clusters to liquid water.
    Cabral do Couto P; Estácio SG; Costa Cabral BJ
    J Chem Phys; 2005 Aug; 123(5):054510. PubMed ID: 16108672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A density functional and quantum Monte Carlo study of glutamic acid in vacuo and in a dielectric continuum medium.
    Floris FM; Filippi C; Amovilli C
    J Chem Phys; 2012 Aug; 137(7):075102. PubMed ID: 22920143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: energy benchmarking with quantum Monte Carlo for water nano-droplets and bulk liquid water.
    Alfè D; Bartók AP; Csányi G; Gillan MJ
    J Chem Phys; 2013 Jun; 138(22):221102. PubMed ID: 23781773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimum energy pathways via quantum Monte Carlo.
    Saccani S; Filippi C; Moroni S
    J Chem Phys; 2013 Feb; 138(8):084109. PubMed ID: 23464142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordered phases of encapsulated diamondoids into carbon nanotubes.
    Legoas SB; dos Santos RP; Troche KS; Coluci VR; Galvão DS
    Nanotechnology; 2011 Aug; 22(31):315708. PubMed ID: 21737869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward accurate reaction energetics for molecular line growth at surface: Quantum Monte Carlo and density functional theory calculations.
    Kanai Y; Takeuchi N
    J Chem Phys; 2009 Dec; 131(21):214708. PubMed ID: 19968361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical excitation energies, Stokes shift, and spin-splitting of C24H72Si14.
    Zope RR; Baruah T; Richardson SL; Pederson MR; Dunlap BI
    J Chem Phys; 2010 Jul; 133(3):034301. PubMed ID: 20649324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamental high-pressure calibration from all-electron quantum Monte Carlo calculations.
    Esler KP; Cohen RE; Militzer B; Kim J; Needs RJ; Towler MD
    Phys Rev Lett; 2010 May; 104(18):185702. PubMed ID: 20482190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of H+H2 and several H-bonded molecules by phaseless auxiliary-field quantum Monte Carlo with plane wave and Gaussian basis sets.
    Al-Saidi WA; Krakauer H; Zhang S
    J Chem Phys; 2007 May; 126(19):194105. PubMed ID: 17523796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and theoretical study of the absorption properties of thiolated diamondoids.
    Landt L; Bostedt C; Wolter D; Möller T; Dahl JE; Carlson RM; Tkachenko BA; Fokin AA; Schreiner PR; Kulesza A; Mitrić R; Bonacić-Koutecký V
    J Chem Phys; 2010 Apr; 132(14):144305. PubMed ID: 20405994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of a Quantum Monte Carlo Protocol To Achieve High Accuracy and High-Throughput Materials Formation Energies.
    Saritas K; Mueller T; Wagner L; Grossman JC
    J Chem Theory Comput; 2017 May; 13(5):1943-1951. PubMed ID: 28358499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical investigations on diamondoids (C
    Wang YT; Zhao YJ; Liao JH; Yang XB
    J Chem Phys; 2018 Jan; 148(1):014306. PubMed ID: 29306287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular limits to the quantum confinement model in diamond clusters.
    Willey TM; Bostedt C; van Buuren T; Dahl JE; Liu SG; Carlson RM; Terminello LJ; Möller T
    Phys Rev Lett; 2005 Sep; 95(11):113401. PubMed ID: 16197003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially resolved electronic and vibronic properties of single diamondoid molecules.
    Wang Y; Kioupakis E; Lu X; Wegner D; Yamachika R; Dahl JE; Carlson RM; Louie SG; Crommie MF
    Nat Mater; 2008 Jan; 7(1):38-42. PubMed ID: 18037893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.