BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 16197967)

  • 1. Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy.
    Ledzewicz U; Schättler H
    Math Biosci; 2007 Apr; 206(2):320-42. PubMed ID: 16197967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model.
    Iliadis A; Barbolosi D
    Comput Biomed Res; 2000 Jun; 33(3):211-26. PubMed ID: 10860586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls.
    de Pillis LG; Gu W; Fister KR; Head T; Maples K; Murugan A; Neal T; Yoshida K
    Math Biosci; 2007 Sep; 209(1):292-315. PubMed ID: 17306310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dosage regimen optimization in cancer chemotherapy using a mathematical model].
    Barbolosi D; Freyer G; Ciccolini J; Iliadis A
    Bull Cancer; 2003 Feb; 90(2):167-75. PubMed ID: 12660135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal control for selected cancer chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function.
    Engelhart M; Lebiedz D; Sager S
    Math Biosci; 2011 Jan; 229(1):123-34. PubMed ID: 21129386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On optimal delivery of combination therapy for tumors.
    d'Onofrio A; Ledzewicz U; Maurer H; Schättler H
    Math Biosci; 2009 Nov; 222(1):13-26. PubMed ID: 19706298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment.
    Ledzewicz U; Marriott J; Maurer H; Schättler H
    Math Med Biol; 2010 Jun; 27(2):157-79. PubMed ID: 20513667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear model predictive control for dosing daily anticancer agents using a novel saturating-rate cell-cycle model.
    Florian JA; Eiseman JL; Parker RS
    Comput Biol Med; 2008 Mar; 38(3):339-47. PubMed ID: 18222419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemotherapy may be delivered based on an integrated view of tumour dynamics.
    Ribba B; You B; Tod M; Girard P; Tranchand B; Trillet-Lenoir V; Freyer G
    IET Syst Biol; 2009 May; 3(3):180-90. PubMed ID: 19449978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy.
    Ledzewicz U; Maurer H; Schättler H
    Math Biosci Eng; 2011 Apr; 8(2):307-23. PubMed ID: 21631132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Action of levamisole on bone marrow repair in patients undergoing anticancer chemotherapy].
    Dujardin P; Lods JC; Cassuto JP; Audoly P
    Therapie; 1976; 31(6):733-8. PubMed ID: 1025779
    [No Abstract]   [Full Text] [Related]  

  • 12. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity.
    Wang S; Schattler H
    Math Biosci Eng; 2016 Dec; 13(6):1223-1240. PubMed ID: 27775377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Therapy burden, drug resistance, and optimal treatment regimen for cancer chemotherapy.
    Boldrini JL; Costa MI
    IMA J Math Appl Med Biol; 2000 Mar; 17(1):33-51. PubMed ID: 10757031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase I dose-finding study and a pharmacokinetic/pharmacodynamic analysis of the neutropenic response of intravenous diflomotecan in patients with advanced malignant tumours.
    Trocòniz IF; Garrido MJ; Segura C; Cendrós JM; Principe P; Peraire C; Obach R
    Cancer Chemother Pharmacol; 2006 Jun; 57(6):727-35. PubMed ID: 16261364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis.
    Schättler H; Ledzewicz U; Cardwell B
    Math Biosci Eng; 2011 Apr; 8(2):355-69. PubMed ID: 21631134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal intervention strategies for cyclic therapeutic methods.
    Vahedi G; Faryabi B; Chamberland JF; Datta A; Dougherty ER
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):281-91. PubMed ID: 19272947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling and simulation of chemotherapy of haematological and gynaecological cancers.
    Nani FK; Oğuztöreli MN
    IMA J Math Appl Med Biol; 1999 Mar; 16(1):39-91. PubMed ID: 10335600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regression and regrowth of tumour cords following single-dose anticancer treatment.
    Bertuzzi A; D'Onofrio A; Fasano A; Gandolfi A
    Bull Math Biol; 2003 Sep; 65(5):903-31. PubMed ID: 12909255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated network-based mechanistic model for tumor growth dynamics under drug administration.
    Ribeiro D; Pinto JM
    Comput Biol Med; 2009 Apr; 39(4):368-84. PubMed ID: 19285661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and optimization of combined cytostatic and cytotoxic cancer chemotherapy.
    Villasana M; Ochoa G; Aguilar S
    Artif Intell Med; 2010 Nov; 50(3):163-73. PubMed ID: 20620035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.