These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16198637)

  • 1. The water economy of South American desert rodents: from integrative to molecular physiological ecology.
    Bozinovic F; Gallardo P
    Comp Biochem Physiol C Toxicol Pharmacol; 2006; 142(3-4):163-172. PubMed ID: 16198637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. South American mammal zoogeography: evidence from convergent evolution in desert rodents.
    Mares MA
    Proc Natl Acad Sci U S A; 1975 May; 72(5):1702-6. PubMed ID: 1057165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal acclimatization in water flux rate, urine osmolality and kidney water channels in free-living degus: molecular mechanisms, physiological processes and ecological implications.
    Bozinovic F; Gallardo PA; Visser GH; Cortés A
    J Exp Biol; 2003 Sep; 206(Pt 17):2959-66. PubMed ID: 12878664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aquaporins in desert rodent physiology.
    Pannabecker TL
    Biol Bull; 2015 Aug; 229(1):120-8. PubMed ID: 26338874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic flexibility at the molecular and organismal level allows desert-dwelling rodents to cope with seasonal water availability.
    Gallardo PA; Cortes A; Bozinovic F
    Physiol Biochem Zool; 2005; 78(2):145-52. PubMed ID: 15778934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecological and evolutionary physiology of desert birds: a progress report.
    Williams JB; Tieleman BI
    Integr Comp Biol; 2002 Feb; 42(1):68-75. PubMed ID: 21708695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy expenditure and efficiency of energy use in rodents: desert and non-desert species.
    Degen AA
    J Basic Clin Physiol Pharmacol; 1998; 9(1):29-49. PubMed ID: 9793802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of xeric-adapted rodents to waterloading.
    Chew RM; Mitchell OG
    Proc Soc Exp Biol Med; 1965 Nov; 120(2):336-8. PubMed ID: 5856410
    [No Abstract]   [Full Text] [Related]  

  • 9. Skin adaptations of some rodents to life in the desert.
    SOKOLOV W
    Nature; 1962 Mar; 193():823-5. PubMed ID: 13914879
    [No Abstract]   [Full Text] [Related]  

  • 10. Whole-genome sequencing reveals adaptations of hairy-footed jerboas (Dipus, Dipodidae) to diverse desert environments.
    Peng X; Cheng J; Li H; Feijó A; Xia L; Ge D; Wen Z; Yang Q
    BMC Biol; 2023 Aug; 21(1):182. PubMed ID: 37649052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the reproductive transcriptomic correlates of acute dehydration in males in the desert-adapted rodent, Peromyscus eremicus.
    Kordonowy L; MacManes M
    BMC Genomics; 2017 Jun; 18(1):473. PubMed ID: 28645248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Rate of water renewal and water balance in 2 desert rodents Meriones shawii and Meriones libycus, studied in their natural environment in Tunisia].
    Bradshaw D; Cheniti T; Lachiver F
    C R Acad Hebd Seances Acad Sci D; 1976 Feb; 282(5):481-4. PubMed ID: 817807
    [No Abstract]   [Full Text] [Related]  

  • 13. Water balance in desert Drosophila: lessons from non-charismatic microfauna.
    Gibbs AG
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Nov; 133(3):781-9. PubMed ID: 12443934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Physiological adaptation of some rodents to arid conditions].
    Slonim AD
    Zh Obshch Biol; 1970; 31(4):415-23. PubMed ID: 5492131
    [No Abstract]   [Full Text] [Related]  

  • 15. Differences in ingestive balance of two populations of neotropical Thrichomys apereoides (Rodentia, Echimyidae).
    Favaroni Mendes LA; Rocha PL; Ribeiro MF; Perry SF; Spinelli Oliveira E
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jul; 138(3):327-32. PubMed ID: 15313487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change and conservation in a warm North American desert: effect in shrubby plants.
    Sosa V; Loera I; Angulo DF; Vásquez-Cruz M; Gándara E
    PeerJ; 2019; 7():e6572. PubMed ID: 30867993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal intraspecific variation along an aridity gradient detected by new renal indices in a desert herbivorous rodent.
    Tejo Riquelme PA; Diaz Isenrath GB; Andino N; Borghi CE
    J Exp Zool A Ecol Genet Physiol; 2014 Jul; 321(6):348-56. PubMed ID: 24799362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water conservation in the South American desert mouse opossum, Thylamys pusilla (Didelphimorphia, Didelphidae).
    Diaz GB; Ojeda RA; Dacar M
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Sep; 130(2):323-30. PubMed ID: 11544077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shared Patterns of Gene Expression and Protein Evolution Associated with Adaptation to Desert Environments in Rodents.
    Bittner NKJ; Mack KL; Nachman MW
    Genome Biol Evol; 2022 Nov; 14(11):. PubMed ID: 36268582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The adjustment of avian metabolic rates and water fluxes to desert environments.
    Tieleman BI; Williams JB
    Physiol Biochem Zool; 2000; 73(4):461-79. PubMed ID: 11009400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.