These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 16198654)

  • 1. The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients.
    Kuypers DR; Naesens M; Vermeire S; Vanrenterghem Y
    Clin Pharmacol Ther; 2005 Oct; 78(4):351-61. PubMed ID: 16198654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of UGT1A7 and UGT1A9 intronic I399 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients.
    Inoue K; Miura M; Satoh S; Kagaya H; Saito M; Habuchi T; Suzuki T
    Ther Drug Monit; 2007 Jun; 29(3):299-304. PubMed ID: 17529886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients.
    Sánchez-Fructuoso AI; Maestro ML; Calvo N; Viudarreta M; Pérez-Flores I; Veganzone S; De la Orden V; Ortega D; Arroyo M; Barrientos A
    Transplant Proc; 2009; 41(6):2313-6. PubMed ID: 19715905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation.
    Baldelli S; Merlini S; Perico N; Nicastri A; Cortinovis M; Gotti E; Remuzzi G; Cattaneo D
    Pharmacogenomics; 2007 Sep; 8(9):1127-41. PubMed ID: 17924828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers.
    Lévesque E; Delage R; Benoit-Biancamano MO; Caron P; Bernard O; Couture F; Guillemette C
    Clin Pharmacol Ther; 2007 Mar; 81(3):392-400. PubMed ID: 17339869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients.
    Kuypers DR; de Jonge H; Naesens M; de Loor H; Halewijck E; Dekens M; Vanrenterghem Y
    Clin Ther; 2008 Apr; 30(4):673-83. PubMed ID: 18498916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of measured trough levels and abbreviated AUC estimation by limited sampling strategies for monitoring mycophenolic acid exposure in stable heart transplant patients receiving cyclosporin A-containing and cyclosporin A-free immunosuppressive regimens.
    Dösch AO; Ehlermann P; Koch A; Remppis A; Katus HA; Dengler TJ
    Clin Ther; 2006 Jun; 28(6):893-905. PubMed ID: 16860172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AcylMPAG plasma concentrations and mycophenolic acid-related side effects in patients undergoing renal transplantation are not related to the UGT2B7-840G>A gene polymorphism.
    van Agteren M; Armstrong VW; van Schaik RH; de Fijter H; Hartmann A; Zeier M; Budde K; Kuypers D; Pisarski P; Le Meur Y; van der Werf M; Mamelok RD; Oellerich M; van Gelder T
    Ther Drug Monit; 2008 Aug; 30(4):439-44. PubMed ID: 18641546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of pharmacokinetics of mycophenolic acid and its glucuronide between patients with lupus nephritis and with kidney transplantation.
    Mino Y; Naito T; Matsushita T; Otsuka A; Ushiyama T; Ozono S; Hishida A; Kagawa Y; Kawakami J
    Ther Drug Monit; 2008 Dec; 30(6):656-61. PubMed ID: 18978521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of mycophenolic acid pharmacokinetic parameters in kidney transplant patients within the first 3 months post-transplant.
    Pawinski T; Durlik M; Szlaska I; Urbanowicz A; Majchrnak J; Gralak B
    J Clin Pharm Ther; 2006 Feb; 31(1):27-34. PubMed ID: 16476117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacokinetics of enteric-coated mycophenolate sodium: comparative study in patients with autoimmune disease and renal allograft.
    Neumann I; Fuhrmann H; Kanzler M; Fang IF; Jaeger A; Graf H; Bayer P; Kovarik J
    Expert Opin Pharmacother; 2008 Apr; 9(6):879-86. PubMed ID: 18377332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetics of mycophenolic acid and its phenolic-glucuronide and ACYl glucuronide metabolites in stable thoracic transplant recipients.
    Ting LS; Partovi N; Levy RD; Riggs KW; Ensom MH
    Ther Drug Monit; 2008 Jun; 30(3):282-91. PubMed ID: 18520599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients.
    Naesens M; Kuypers DR; Verbeke K; Vanrenterghem Y
    Transplantation; 2006 Oct; 82(8):1074-84. PubMed ID: 17060857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Associations of UDP-glucuronosyltransferases polymorphisms with mycophenolate mofetil pharmacokinetics in Chinese renal transplant patients.
    Xie XC; Li J; Wang HY; Li HL; Liu J; Fu Q; Huang JW; Zhu C; Zhong GP; Wang XD; Sun PP; Huang M; Wang CX; Li JL
    Acta Pharmacol Sin; 2015 May; 36(5):644-50. PubMed ID: 25864649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients.
    Kuypers DR; Claes K; Evenepoel P; Maes B; Vanrenterghem Y
    Clin Pharmacol Ther; 2004 May; 75(5):434-47. PubMed ID: 15116056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rifampin induces alterations in mycophenolic acid glucuronidation and elimination: implications for drug exposure in renal allograft recipients.
    Naesens M; Kuypers DR; Streit F; Armstrong VW; Oellerich M; Verbeke K; Vanrenterghem Y
    Clin Pharmacol Ther; 2006 Nov; 80(5):509-21. PubMed ID: 17112807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of uridine diphosphate-glucuronosyltransferases (1A9) polymorphisms on mycophenolic acid pharmacokinetics in patients with renal transplant.
    Ciftci HS; Demir E; Karadeniz MS; Tefik T; Nane I; Oguz FS; Aydin F; Turkmen A
    Ren Fail; 2018 Nov; 40(1):395-402. PubMed ID: 30012031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients.
    Fukuda T; Goebel J; Cox S; Maseck D; Zhang K; Sherbotie JR; Ellis EN; James LP; Ward RM; Vinks AA
    Ther Drug Monit; 2012 Dec; 34(6):671-9. PubMed ID: 23131697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients.
    Zhang WX; Chen B; Jin Z; Yu Z; Wang X; Chen H; Mao A; Cai W
    Xenobiotica; 2008 Nov; 38(11):1422-36. PubMed ID: 18946804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a predictive limited sampling strategy for estimation of mycophenolic acid area under the concentration time curve in patients receiving concomitant sirolimus or cyclosporine.
    Figurski MJ; Nawrocki A; Pescovitz MD; Bouw R; Shaw LM
    Ther Drug Monit; 2008 Aug; 30(4):445-55. PubMed ID: 18641543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.