BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16198674)

  • 1. Inhibition of progesterone receptor activity in recombinant yeast by soot from fossil fuel combustion emissions and air particulate materials.
    Wang J; Xie P; Kettrup A; Schramm KW
    Sci Total Environ; 2005 Oct; 349(1-3):120-8. PubMed ID: 16198674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of progesterone receptor activity in yeast by synthetic chemicals.
    Tran DQ; Klotz DM; Ladlie BL; Ide CF; McLachlan JA; Arnold SF
    Biochem Biophys Res Commun; 1996 Dec; 229(2):518-23. PubMed ID: 8954930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Polar neutral organic compounds (POCN) in city aerosols. 2. Measuring of emissions from domestic fuel and vehicle exhaust and from immission particles in Berlin (West)].
    Moriske HJ; Freise R; Schneider C; RĂ¼den H
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1987 Oct; 185(1-2):72-104. PubMed ID: 2448974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion.
    Reddy MS; Basha S; Joshi HV; Jha B
    J Hazard Mater; 2005 Aug; 123(1-3):242-9. PubMed ID: 15916850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects.
    Lewtas J
    Mutat Res; 2007; 636(1-3):95-133. PubMed ID: 17951105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations.
    Hinkley JT; Bridgman HA; Buhre BJ; Gupta RP; Nelson PF; Wall TF
    Sci Total Environ; 2008 Feb; 391(1):104-13. PubMed ID: 18054995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of PM(2.5) in the ambient air of Shanghai City by analyzing individual particles.
    Yue W; Li X; Liu J; Li Y; Yu X; Deng B; Wan T; Zhang G; Huang Y; He W; Hua W; Shao L; Li W; Yang S
    Sci Total Environ; 2006 Sep; 368(2-3):916-25. PubMed ID: 16782173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features.
    Fernandes MB; Skjemstad JO; Johnson BB; Wells JD; Brooks P
    Chemosphere; 2003 Jun; 51(8):785-95. PubMed ID: 12668037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity and bias of molecular marker-based aerosol source apportionment models to small conltibutions of coal combustion soot.
    Rutter AP; Snyder DC; Schauer JJ; DeMinter J; Shelton B
    Environ Sci Technol; 2009 Oct; 43(20):7770-7. PubMed ID: 19921892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflectance spectroscopy is an effective tool for monitoring soot pollution in an urban suburb.
    Saaroni H; Chudnovsky A; Ben-Dor E
    Sci Total Environ; 2010 Feb; 408(5):1102-10. PubMed ID: 19944448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.
    Valavanidis A; Iliopoulos N; Gotsis G; Fiotakis K
    J Hazard Mater; 2008 Aug; 156(1-3):277-84. PubMed ID: 18249066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of soot particles of biomass fuels with endocrine-modulating activity in yeast-based bioassay.
    Wang J; Xie P; Kettrup A; Schramm KW
    Anal Bioanal Chem; 2005 Apr; 381(8):1609-18. PubMed ID: 15770472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of the structure of carbon materials relevant in combustion.
    Apicella B; Barbella R; Ciajolo A; Tregrossi A
    Chemosphere; 2003 Jun; 51(10):1063-9. PubMed ID: 12718971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Source apportionment of PM(10) and PM(2.5) using positive matrix factorization and chemical mass balance in Izmir, Turkey.
    Yatkin S; Bayram A
    Sci Total Environ; 2008 Feb; 390(1):109-23. PubMed ID: 17964634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time analysis of soot emissions from bituminous coal pyrolysis and combustion with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer.
    Gao S; Zhang Y; Meng J; Shu J
    Sci Total Environ; 2009 Jan; 407(3):1193-9. PubMed ID: 19012948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dilution-based emissions sampling from stationary sources: Part 2--Gas-fired combustors compared with other fuel-fired systems.
    England GC; Watson JG; Chow JC; Zielinska B; Chang MC; Loos KR; Hidy GM
    J Air Waste Manag Assoc; 2007 Jan; 57(1):79-93. PubMed ID: 17269233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro evaluation of atmospheric particulate matter and sedimentation particles using yeast bioassay system.
    Mori T; Inudo M; Takao Y; Koga M; Takemasa T; Shinohara R; Arizono K
    Environ Sci; 2007; 14(4):203-10. PubMed ID: 17762843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron spin resonance of particulate soot samples from automobiles to help environmental studies.
    Yamanaka C; Matsuda T; Ikeya M
    Appl Radiat Isot; 2005 Feb; 62(2):307-11. PubMed ID: 15607466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of particulate emissions from stationary fuel burning sources in the core area of the Metropolitan Boston air quality control region.
    Siegel RD; Morgenstern P
    Am Ind Hyg Assoc J; 1976 Feb; 37(2):109-16. PubMed ID: 1251798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.