BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16199054)

  • 1. Zinc binding stabilizes mitochondrial Tim10 in a reduced and import-competent state kinetically.
    Lu H; Woodburn J
    J Mol Biol; 2005 Nov; 353(4):897-910. PubMed ID: 16199054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10.
    Allen S; Lu H; Thornton D; Tokatlidis K
    J Biol Chem; 2003 Oct; 278(40):38505-13. PubMed ID: 12882976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative folding competes with mitochondrial import of the small Tim proteins.
    Morgan B; Lu H
    Biochem J; 2008 Apr; 411(1):115-22. PubMed ID: 18076384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc binding of Tim10: evidence for existence of an unstructured binding intermediate for a zinc finger protein.
    Ivanova E; Ball M; Lu H
    Proteins; 2008 Apr; 71(1):467-75. PubMed ID: 17963238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc can play chaperone-like and inhibitor roles during import of mitochondrial small Tim proteins.
    Morgan B; Ang SK; Yan G; Lu H
    J Biol Chem; 2009 Mar; 284(11):6818-25. PubMed ID: 19117943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structural basis of the TIM10 chaperone assembly.
    Lu H; Golovanov AP; Alcock F; Grossmann JG; Allen S; Lian LY; Tokatlidis K
    J Biol Chem; 2004 Apr; 279(18):18959-66. PubMed ID: 14973126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of Tim9 and Tim10 into a functional chaperone.
    Vial S; Lu H; Allen S; Savory P; Thornton D; Sheehan J; Tokatlidis K
    J Biol Chem; 2002 Sep; 277(39):36100-8. PubMed ID: 12138093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation of conserved charged residues in mitochondrial TIM10 subunits precludes TIM10 complex assembly, but does not abolish growth of yeast cells.
    Vergnolle MA; Alcock FH; Petrakis N; Tokatlidis K
    J Mol Biol; 2007 Aug; 371(5):1315-24. PubMed ID: 17618651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Tim9 protects Tim10 from degradation by the protease Yme1.
    Spiller MP; Guo L; Wang Q; Tran P; Lu H
    Biosci Rep; 2015 Mar; 35(3):. PubMed ID: 26182355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric and electrostatic protein-protein interactions regulate the assembly of the heterohexameric Tim9-Tim10 complex.
    Ivanova E; Lu H
    J Mol Biol; 2008 Jun; 379(3):609-16. PubMed ID: 18462749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional TIM10 chaperone assembly is redox-regulated in vivo.
    Lu H; Allen S; Wardleworth L; Savory P; Tokatlidis K
    J Biol Chem; 2004 Apr; 279(18):18952-8. PubMed ID: 14973127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved substrate binding by chaperones in the bacterial periplasm and the mitochondrial intermembrane space.
    Alcock FH; Grossmann JG; Gentle IE; Likić VA; Lithgow T; Tokatlidis K
    Biochem J; 2008 Jan; 409(2):377-87. PubMed ID: 17894549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of the mitochondrial Tim9-Tim10 complex: a multi-step reaction with novel intermediates.
    Ivanova E; Jowitt TA; Lu H
    J Mol Biol; 2008 Jan; 375(1):229-39. PubMed ID: 18022191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved motifs reveal details of ancestry and structure in the small TIM chaperones of the mitochondrial intermembrane space.
    Gentle IE; Perry AJ; Alcock FH; Likić VA; Dolezal P; Ng ET; Purcell AW; McConnville M; Naderer T; Chanez AL; Charrière F; Aschinger C; Schneider A; Tokatlidis K; Lithgow T
    Mol Biol Evol; 2007 May; 24(5):1149-60. PubMed ID: 17329230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional requirements for activity of the Tim9-Tim10 complex in mitochondrial protein import.
    Baker MJ; Webb CT; Stroud DA; Palmer CS; Frazier AE; Guiard B; Chacinska A; Gulbis JM; Ryan MT
    Mol Biol Cell; 2009 Feb; 20(3):769-79. PubMed ID: 19037098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller.
    Webb CT; Gorman MA; Lazarou M; Ryan MT; Gulbis JM
    Mol Cell; 2006 Jan; 21(1):123-33. PubMed ID: 16387659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mitochondrial intermembrane space oxireductase Mia40 funnels the oxidative folding pathway of the cytochrome c oxidase assembly protein Cox19.
    Fraga H; Bech-Serra JJ; Canals F; Ortega G; Millet O; Ventura S
    J Biol Chem; 2014 Apr; 289(14):9852-64. PubMed ID: 24569988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol.
    Klöppel C; Suzuki Y; Kojer K; Petrungaro C; Longen S; Fiedler S; Keller S; Riemer J
    Mol Biol Cell; 2011 Oct; 22(20):3749-57. PubMed ID: 21865594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding and biogenesis of mitochondrial small Tim proteins.
    Ceh-Pavia E; Spiller MP; Lu H
    Int J Mol Sci; 2013 Aug; 14(8):16685-705. PubMed ID: 23945562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative folding of small Tims is mediated by site-specific docking onto Mia40 in the mitochondrial intermembrane space.
    Sideris DP; Tokatlidis K
    Mol Microbiol; 2007 Sep; 65(5):1360-73. PubMed ID: 17680986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.