These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 1619922)
1. Lymphocyte migration to tumors after hyperthermia and immunotherapy. Midis GP; Fabian DF; Lefor AT J Surg Res; 1992 May; 52(5):530-6. PubMed ID: 1619922 [TBL] [Abstract][Full Text] [Related]
2. Tissue distribution and tumor localization of effector cells in adoptive immunotherapy of cancer. Basse PH APMIS Suppl; 1995; 55():1-28. PubMed ID: 8534522 [TBL] [Abstract][Full Text] [Related]
3. Local hyperthermia abrogates the anti-immunotherapeutic effect of interleukin-8. Geehan DM; Fabian DF; Lefor AT J Surg Oncol; 1994 Jun; 56(2):102-6. PubMed ID: 8007673 [TBL] [Abstract][Full Text] [Related]
4. [Studies on lymphokine-activated killer (LAK) cell: accumulation in tumor tissue and the therapeutic effects of adoptive immunotherapy]. Wakizaka Y Hokkaido Igaku Zasshi; 1992 Jul; 67(4):475-87. PubMed ID: 1330859 [TBL] [Abstract][Full Text] [Related]
5. In vivo migration and tissue localization of highly purified lymphokine-activated killer cells (A-LAK cells) in tumor-bearing rats. Felgar RE; Hiserodt JC Cell Immunol; 1990 Sep; 129(2):288-98. PubMed ID: 2383892 [TBL] [Abstract][Full Text] [Related]
6. Antitumor effects of a new interleukin-2 slow delivery system on methylcholanthrene-induced fibrosarcoma in mice. Fujiwara T; Sakagami K; Orita K J Cancer Res Clin Oncol; 1990; 116(2):141-8. PubMed ID: 2324156 [TBL] [Abstract][Full Text] [Related]
7. Biodistribution and tumor localization of lymphokine-activated killer T cells following different routes of administration into tumor-bearing animals. Kjaergaard J; Hokland ME; Agger R; Skovbo A; Nannmark U; Basse PH Cancer Immunol Immunother; 2000 Jan; 48(10):550-60. PubMed ID: 10630307 [TBL] [Abstract][Full Text] [Related]
8. Endogenous and adoptively transferred A-NK and T-LAK cells continuously accumulate within murine metastases up to 48 h after inoculation. Hokland M; Kjaergaard J; Kuppen PJ; Nannmark U; Agger R; Hokland P; Basse P In Vivo; 1999; 13(3):199-204. PubMed ID: 10459491 [TBL] [Abstract][Full Text] [Related]
9. Effects of cancer immunotherapy with indomethacin and interleukin-2 on murine hemopoietic stem cells. Saarloos MN; Khoo NK; Lala PK Cancer Res; 1992 Dec; 52(23):6452-62. PubMed ID: 1423293 [TBL] [Abstract][Full Text] [Related]
10. Tumor necrosis factor alpha mediates the antitumor effect of combined interleukin-2 and whole body hyperthermia. Fritz KL; Koziol S; Fabian DF; Lefor AT J Surg Res; 1996 Jan; 60(1):55-60. PubMed ID: 8592432 [TBL] [Abstract][Full Text] [Related]
11. Combined hyperthermia and immunotherapy treatment of multiple pulmonary metastases in mice. Strauch ED; Fabian DF; Turner J; Lefor AT Surg Oncol; 1994 Feb; 3(1):45-52. PubMed ID: 8186870 [TBL] [Abstract][Full Text] [Related]
12. Antitumor efficacy of lymphokine-activated killer cells and recombinant interleukin-2 in vivo: survival benefit and mechanisms of tumor escape in mice undergoing immunotherapy. Mulé JJ; Ettinghausen SE; Spiess PJ; Shu S; Rosenberg SA Cancer Res; 1986 Feb; 46(2):676-83. PubMed ID: 3484431 [TBL] [Abstract][Full Text] [Related]
13. Enhanced survival of IFN-alpha augmented IL-2 therapy of pulmonary metastases: efficacy comparable to interleukin-2 and lymphokine activated killer cells. Kim B; Warnaka P J Surg Res; 1991 Jan; 50(1):40-6. PubMed ID: 1987429 [TBL] [Abstract][Full Text] [Related]
14. Adoptive immunotherapy using lymphokine-activated killer cells and recombinant interleukin-2 in preventing and treating spontaneous pulmonary metastases of syngeneic Dunning rat prostate tumor. Tjota A; Zhang YQ; Piedmonte MR; Lee CL J Urol; 1991 Jul; 146(1):177-83. PubMed ID: 2056587 [TBL] [Abstract][Full Text] [Related]
15. Lymphokine-activated killer (LAK) cells can be focused at sites of tumor growth by products of macrophage activation. Migliori RJ; Gruber SA; Sawyer MD; Hoffman R; Ochoa A; Bach FH; Simmons RL Surgery; 1987 Aug; 102(2):155-62. PubMed ID: 3497459 [TBL] [Abstract][Full Text] [Related]
16. Recombinant interleukin 2 stimulates in vivo proliferation of adoptively transferred lymphokine-activated killer (LAK) cells. Ettinghausen SE; Lipford EH; Mulé JJ; Rosenberg SA J Immunol; 1985 Nov; 135(5):3623-35. PubMed ID: 3900213 [TBL] [Abstract][Full Text] [Related]
17. Augmented accumulation of transferred lymphokine-activated killer (LAK) cells at murine tumor sites through production of LAK-attractant facilitated by chemotherapy. Hosokawa M; Wakizaka Y; Kuramitsu Y; Micallef M; Togashi Y; Kobayashi H Tohoku J Exp Med; 1992 Oct; 168(2):413-6. PubMed ID: 1306328 [TBL] [Abstract][Full Text] [Related]
18. Ineffectiveness of adoptive chemoimmunotherapy with lymphokine-activated killer cells, interleukin-2, and cyclophosphamide on palpable intradermal murine bladder cancer. Lee K; O'Donnell RW; Cockett AT J Biol Response Mod; 1988 Feb; 7(1):43-53. PubMed ID: 3259620 [TBL] [Abstract][Full Text] [Related]
19. Therapy of advanced solid tumors in mice using chemotherapy in combination with interleukin-2 with and without lymphokine-activated killer cells. Kedar E; Ben-Aziz R; Shiloni E Isr J Med Sci; 1988; 24(9-10):494-504. PubMed ID: 3264551 [TBL] [Abstract][Full Text] [Related]
20. [Combined effect of adoptive immunotherapy (AIT) with lymphokine-activated killer (LAK) cells and interleukin-2 (IL-2) and chemotherapy in tumor-bearing mice]. Yamano Y; Yoshimura A; Shibuya M; Kudoh S Nihon Ika Daigaku Zasshi; 1997 Jun; 64(3):211-9. PubMed ID: 9217363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]