BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 16199220)

  • 1. Duplicated cytoglobin genes in teleost fishes.
    Fuchs C; Luckhardt A; Gerlach F; Burmester T; Hankeln T
    Biochem Biophys Res Commun; 2005 Nov; 337(1):216-23. PubMed ID: 16199220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A globin gene of ancient evolutionary origin in lower vertebrates: evidence for two distinct globin families in animals.
    Roesner A; Fuchs C; Hankeln T; Burmester T
    Mol Biol Evol; 2005 Jan; 22(1):12-20. PubMed ID: 15356282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression and tissue distribution of cytoglobin and myoglobin in the Amphibia and Reptilia: possible compensation of myoglobin with cytoglobin in skeletal muscle cells of anurans that lack the myoglobin gene.
    Xi Y; Obara M; Ishida Y; Ikeda S; Yoshizato K
    Gene; 2007 Aug; 398(1-2):94-102. PubMed ID: 17560742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroglobin, cytoglobin, and a novel, eye-specific globin from chicken.
    Kugelstadt D; Haberkamp M; Hankeln T; Burmester T
    Biochem Biophys Res Commun; 2004 Dec; 325(3):719-25. PubMed ID: 15541349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroglobin and cytoglobin: genes, proteins and evolution.
    Burmester T; Haberkamp M; Mitz S; Roesner A; Schmidt M; Ebner B; Gerlach F; Fuchs C; Hankeln T
    IUBMB Life; 2004; 56(11-12):703-7. PubMed ID: 15804835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the exon-intron structures of fish, amphibian, bird and mammalian hatching enzyme genes, with special reference to the intron loss evolution of hatching enzyme genes in Teleostei.
    Kawaguchi M; Yasumasu S; Hiroi J; Naruse K; Suzuki T; Iuchi I
    Gene; 2007 May; 392(1-2):77-88. PubMed ID: 17222522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes.
    Sundström G; Larsson TA; Brenner S; Venkatesh B; Larhammar D
    Gen Comp Endocrinol; 2008 Feb; 155(3):705-16. PubMed ID: 17950734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel olfactory receptor gene family in teleost fish.
    Saraiva LR; Korsching SI
    Genome Res; 2007 Oct; 17(10):1448-57. PubMed ID: 17717047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishes.
    de Souza FS; Bumaschny VF; Low MJ; Rubinstein M
    Mol Biol Evol; 2005 Dec; 22(12):2417-27. PubMed ID: 16093565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of a vitellogenin gene cluster in oviparous vertebrates and identification of its traces in the platypus genome.
    Babin PJ
    Gene; 2008 Apr; 413(1-2):76-82. PubMed ID: 18343608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservation of globin genes in the "living fossil" Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family.
    Schwarze K; Burmester T
    Biochim Biophys Acta; 2013 Sep; 1834(9):1801-12. PubMed ID: 23360762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential loss and retention of cytoglobin, myoglobin, and globin-E during the radiation of vertebrates.
    Hoffmann FG; Opazo JC; Storz JF
    Genome Biol Evol; 2011; 3():588-600. PubMed ID: 21697098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroglobins from the zebrafish Danio rerio and the pufferfish Tetraodon nigroviridis.
    Awenius C; Hankeln T; Burmester T
    Biochem Biophys Res Commun; 2001 Sep; 287(2):418-21. PubMed ID: 11554744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uneven evolutionary rates of bradykinin B1 and B2 receptors in vertebrate lineages.
    Bromée T; Venkatesh B; Brenner S; Postlethwait JH; Yan YL; Larhammar D
    Gene; 2006 May; 373():100-8. PubMed ID: 16530355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic organization and transcription of the medaka and zebrafish cellular retinol-binding protein (rbp) genes.
    Parmar MB; Shams R; Wright JM
    Mar Genomics; 2013 Sep; 11():1-10. PubMed ID: 23632098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two divergent leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean evolution.
    Gorissen M; Bernier NJ; Nabuurs SB; Flik G; Huising MO
    J Endocrinol; 2009 Jun; 201(3):329-39. PubMed ID: 19293295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global identification and comparative analysis of SOCS genes in fish: insights into the molecular evolution of SOCS family.
    Jin HJ; Shao JZ; Xiang LX; Wang H; Sun LL
    Mol Immunol; 2008 Mar; 45(5):1258-68. PubMed ID: 18029016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I; Salzburger W; Meyer A
    Mol Biol Evol; 2006 Jun; 23(6):1192-202. PubMed ID: 16547150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The amphibian globin gene repertoire as revealed by the Xenopus genome.
    Fuchs C; Burmester T; Hankeln T
    Cytogenet Genome Res; 2006; 112(3-4):296-306. PubMed ID: 16484786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics of duplicate γ-glutamyl transferase genes in teleosts: medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), green spotted pufferfish (Tetraodon nigroviridis), fugu (Takifugu rubripes), and zebrafish (Danio rerio).
    Law SH; Redelings BD; Kullman SW
    J Exp Zool B Mol Dev Evol; 2012 Jan; 318(1):35-49. PubMed ID: 21898790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.