These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 16199486)
1. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Thomas AL; Guerreiro SM; Sodek L Ann Bot; 2005 Dec; 96(7):1191-8. PubMed ID: 16199486 [TBL] [Abstract][Full Text] [Related]
2. Cortical Aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding. Shimamura S; Yoshida S; Mochizuki T Ann Bot; 2007 Dec; 100(7):1431-9. PubMed ID: 17921518 [TBL] [Abstract][Full Text] [Related]
3. Recovery of nitrogen fixation after short-term flooding of the nodulated root system of soybean. Justino GC; Sodek L J Plant Physiol; 2013 Feb; 170(3):235-41. PubMed ID: 23158501 [TBL] [Abstract][Full Text] [Related]
4. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max). Valliyodan B; Van Toai TT; Alves JD; de Fátima P Goulart P; Lee JD; Fritschi FB; Rahman MA; Islam R; Shannon JG; Nguyen HT Int J Mol Sci; 2014 Sep; 15(10):17622-43. PubMed ID: 25268626 [TBL] [Abstract][Full Text] [Related]
5. Stem hypertrophic lenticels and secondary aerenchyma enable oxygen transport to roots of soybean in flooded soil. Shimamura S; Yamamoto R; Nakamura T; Shimada S; Komatsu S Ann Bot; 2010 Aug; 106(2):277-84. PubMed ID: 20660468 [TBL] [Abstract][Full Text] [Related]
6. Adventitious roots of wheat seedlings that emerge in oxygen-deficient conditions have increased root diameters with highly developed lysigenous aerenchyma. Yamauchi T; Abe F; Kawaguchi K; Oyanagi A; Nakazono M Plant Signal Behav; 2014; 9(4):e28506. PubMed ID: 24690588 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of Aerenchyma distribution in the cortex of sulfate-deprived adventitious roots of maize. Bouranis DL; Chorianopoulou SN; Kollias C; Maniou P; Protonotarios VE; Siyiannis VF; Hawkesford MJ Ann Bot; 2006 May; 97(5):695-704. PubMed ID: 16481362 [TBL] [Abstract][Full Text] [Related]
8. Erythrina speciosa (Leguminosae-Papilionoideae) under soil water saturation: morphophysiological and growth responses. Medina CL; Sanches MC; Tucci ML; Sousa CA; Cuzzuol GR; Joly CA Ann Bot; 2009 Sep; 104(4):671-80. PubMed ID: 19581282 [TBL] [Abstract][Full Text] [Related]
9. Role of adventitious roots in water relations of tamarack (Larix laricina) seedlings exposed to flooding. Calvo-Polanco M; Señorans J; Zwiazek JJ BMC Plant Biol; 2012 Jun; 12():99. PubMed ID: 22738296 [TBL] [Abstract][Full Text] [Related]
10. Waterlogging tolerance, tissue nitrogen and oxygen transport in the forage legume Melilotus siculus: a comparison of nodulated and nitrate-fed plants. Konnerup D; Toro G; Pedersen O; Colmer TD Ann Bot; 2018 Mar; 121(4):699-709. PubMed ID: 29351575 [TBL] [Abstract][Full Text] [Related]
11. Primary and secondary aerenchyma oxygen transportation pathways of Syzygium kunstleri (King) Bahadur & R. C. Gaur adventitious roots in hypoxic conditions. Sou HD; Masumori M; Yamanoshita T; Tange T Sci Rep; 2021 Feb; 11(1):4520. PubMed ID: 33633329 [TBL] [Abstract][Full Text] [Related]
12. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots. Yamauchi T; Nakazono M Plant Sci; 2022 Aug; 321():111340. PubMed ID: 35696932 [TBL] [Abstract][Full Text] [Related]
13. Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings. Fougnies L; Renciot S; Muller F; Plenchette C; Prin Y; de Faria SM; Bouvet JM; Sylla SN; Dreyfus B; Bâ AM Mycorrhiza; 2007 May; 17(3):159-166. PubMed ID: 17143615 [TBL] [Abstract][Full Text] [Related]
14. Sucrose supply from leaves is required for aerenchymatous phellem formation in hypocotyl of soybean under waterlogged conditions. Takahashi H; Xiaohua Q; Shimamura S; Yanagawa A; Hiraga S; Nakazono M Ann Bot; 2018 Mar; 121(4):723-732. PubMed ID: 29370345 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots. Abiko T; Obara M Plant Sci; 2014 Feb; 215-216():76-83. PubMed ID: 24388517 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. King CA; Purcell LC Plant Physiol; 2005 Apr; 137(4):1389-96. PubMed ID: 15778462 [TBL] [Abstract][Full Text] [Related]
17. Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum 'Park'. Aschi-Smiti S; Chaibi W; Brouquisse R; Ricard B; Saglio P Ann Bot; 2003 Jan; 91 Spec No(2):195-204. PubMed ID: 12509340 [TBL] [Abstract][Full Text] [Related]
18. Immunoprofiling of Cell Wall Carbohydrate Modifications During Flooding-Induced Aerenchyma Formation in Fabaceae Roots. Pegg T; Edelmann RR; Gladish DK Front Plant Sci; 2019; 10():1805. PubMed ID: 32117353 [TBL] [Abstract][Full Text] [Related]
19. Oxygen in the air and oxygen dissolved in the floodwater both sustain growth of aquatic adventitious roots in rice. Lin C; Ogorek LLP; Pedersen O; Sauter M J Exp Bot; 2021 Feb; 72(5):1879-1890. PubMed ID: 33206163 [TBL] [Abstract][Full Text] [Related]
20. Application of Nitrate, Ammonium, or Urea Changes the Concentrations of Ureides, Urea, Amino Acids and Other Metabolites in Xylem Sap and in the Organs of Soybean Plants ( Ono Y; Fukasawa M; Sueyoshi K; Ohtake N; Sato T; Tanabata S; Toyota R; Higuchi K; Saito A; Ohyama T Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]