BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 16199500)

  • 1. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.
    Wawrezinieck L; Rigneault H; Marguet D; Lenne PF
    Biophys J; 2005 Dec; 89(6):4029-42. PubMed ID: 16199500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork.
    Lenne PF; Wawrezinieck L; Conchonaud F; Wurtz O; Boned A; Guo XJ; Rigneault H; He HT; Marguet D
    EMBO J; 2006 Jul; 25(14):3245-56. PubMed ID: 16858413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy.
    Humpolícková J; Gielen E; Benda A; Fagulova V; Vercammen J; Vandeven M; Hof M; Ameloot M; Engelborghs Y
    Biophys J; 2006 Aug; 91(3):L23-5. PubMed ID: 16751239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The imaging FCS diffusion law in the presence of multiple diffusive modes.
    Veerapathiran S; Wohland T
    Methods; 2018 May; 140-141():140-150. PubMed ID: 29203404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells.
    Gombos I; Steinbach G; Pomozi I; Balogh A; Vámosi G; Gansen A; László G; Garab G; Matkó J
    Cytometry A; 2008 Mar; 73(3):220-9. PubMed ID: 18163467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy.
    Kusumi A; Shirai YM; Koyama-Honda I; Suzuki KG; Fujiwara TK
    FEBS Lett; 2010 May; 584(9):1814-23. PubMed ID: 20178787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Lipid and Cell Membrane Organization by the Fluorescence Correlation Spectroscopy Diffusion Law.
    Ng XW; Bag N; Wohland T
    Chimia (Aarau); 2015; 69(3):112-9. PubMed ID: 26507213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion analysis within single nanometric apertures reveals the ultrafine cell membrane organization.
    Wenger J; Conchonaud F; Dintinger J; Wawrezinieck L; Ebbesen TW; Rigneault H; Marguet D; Lenne PF
    Biophys J; 2007 Feb; 92(3):913-9. PubMed ID: 17085499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy.
    He HT; Marguet D
    Annu Rev Phys Chem; 2011; 62():417-36. PubMed ID: 21219145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A straightforward STED-background corrected fitting model for unbiased STED-FCS analyses.
    Wang R; Brustlein S; Mailfert S; Fabre R; Fallet M; Sivankutty S; Rigneault H; Marguet D
    Methods; 2018 May; 140-141():212-222. PubMed ID: 29454082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing plasma membrane dynamics at the single-molecule level.
    Li X; Luu DT; Maurel C; Lin J
    Trends Plant Sci; 2013 Nov; 18(11):617-24. PubMed ID: 23911558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scanning fluorescence correlation spectroscopy in model membrane systems.
    Unsay JD; García-Sáez AJ
    Methods Mol Biol; 2013; 1033():185-205. PubMed ID: 23996179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy.
    Ohsugi Y; Saito K; Tamura M; Kinjo M
    Biophys J; 2006 Nov; 91(9):3456-64. PubMed ID: 16891361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning fluorescence correlation spectroscopy comes full circle.
    Gunther G; Jameson DM; Aguilar J; Sánchez SA
    Methods; 2018 May; 140-141():52-61. PubMed ID: 29408224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells.
    Bulseco DA; Wolf DE
    Methods Cell Biol; 2013; 114():489-524. PubMed ID: 23931520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma membrane organization and dynamics is probe and cell line dependent.
    Huang S; Lim SY; Gupta A; Bag N; Wohland T
    Biochim Biophys Acta Biomembr; 2017 Sep; 1859(9 Pt A):1483-1492. PubMed ID: 27998689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A user's guide for characterizing plasma membrane subdomains in living cells by spot variation fluorescence correlation spectroscopy.
    Mailfert S; Hamon Y; Bertaux N; He HT; Marguet D
    Methods Cell Biol; 2017; 139():1-22. PubMed ID: 28215331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes.
    Bag N; Ng XW; Sankaran J; Wohland T
    Methods Appl Fluoresc; 2016 Jul; 4(3):034003. PubMed ID: 28355150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes.
    Manzo C; van Zanten TS; Garcia-Parajo MF
    Biophys J; 2011 Jan; 100(2):L8-10. PubMed ID: 21244822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-resolution optical microscopy of lipid plasma membrane dynamics.
    Eggeling C
    Essays Biochem; 2015; 57():69-80. PubMed ID: 25658345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.