BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27044 related articles for article (PubMed ID: 16199517)

  • 1. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
    Subramanian A; Tamayo P; Mootha VK; Mukherjee S; Ebert BL; Gillette MA; Paulovich A; Pomeroy SL; Golub TR; Lander ES; Mesirov JP
    Proc Natl Acad Sci U S A; 2005 Oct; 102(43):15545-50. PubMed ID: 16199517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A SATS algorithm for jointly identifying multiple differentially expressed gene sets.
    Yang TY
    Stat Med; 2011 Jul; 30(16):2028-39. PubMed ID: 21472762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative evaluation of gene-set analysis methods.
    Liu Q; Dinu I; Adewale AJ; Potter JD; Yasui Y
    BMC Bioinformatics; 2007 Nov; 8():431. PubMed ID: 17988400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical Test of Expression Pattern (STEPath): a new strategy to integrate gene expression data with genomic information in individual and meta-analysis studies.
    Martini P; Risso D; Sales G; Romualdi C; Lanfranchi G; Cagnin S
    BMC Bioinformatics; 2011 Apr; 12():92. PubMed ID: 21481242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concordant integrative gene set enrichment analysis of multiple large-scale two-sample expression data sets.
    Lai Y; Zhang F; Nayak TK; Modarres R; Lee NH; McCaffrey TA
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S6. PubMed ID: 24564564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Appearance frequency modulated gene set enrichment testing.
    Ma J; Sartor MA; Jagadish HV
    BMC Bioinformatics; 2011 Mar; 12():81. PubMed ID: 21418606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convergent Random Forest predictor: methodology for predicting drug response from genome-scale data applied to anti-TNF response.
    Bienkowska JR; Dalgin GS; Batliwalla F; Allaire N; Roubenoff R; Gregersen PK; Carulli JP
    Genomics; 2009 Dec; 94(6):423-32. PubMed ID: 19699293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of gene set analysis methods based on microarray data.
    Alavi-Majd H; Khodakarim S; Zayeri F; Rezaei-Tavirani M; Tabatabaei SM; Heydarpour-Meymeh M
    Gene; 2014 Jan; 534(2):383-9. PubMed ID: 24012817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic and transcriptomic profiles and in vitro resistance to mitoxantrone and idarubicin in pediatric acute leukemias.
    Laskowska J; Lewandowska-Bieniek J; Szczepanek J; Styczyński J; Tretyn A
    J Gene Med; 2016 Aug; 18(8):165-79. PubMed ID: 27280600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BubbleGUM: automatic extraction of phenotype molecular signatures and comprehensive visualization of multiple Gene Set Enrichment Analyses.
    Spinelli L; Carpentier S; Montañana Sanchis F; Dalod M; Vu Manh TP
    BMC Genomics; 2015 Oct; 16():814. PubMed ID: 26481321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GAGE: generally applicable gene set enrichment for pathway analysis.
    Luo W; Friedman MS; Shedden K; Hankenson KD; Woolf PJ
    BMC Bioinformatics; 2009 May; 10():161. PubMed ID: 19473525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GSVA: gene set variation analysis for microarray and RNA-seq data.
    Hänzelmann S; Castelo R; Guinney J
    BMC Bioinformatics; 2013 Jan; 14():7. PubMed ID: 23323831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential.
    Tripathi S; Glazko GV; Emmert-Streib F
    Nucleic Acids Res; 2013 Apr; 41(7):e82. PubMed ID: 23389952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting conserved gene expression motifs from gene expression data.
    Murali TM; Kasif S
    Pac Symp Biocomput; 2003; ():77-88. PubMed ID: 12603019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsupervised clustering in mRNA expression profiles.
    Tasoulis DK; Plagianakos VP; Vrahatis MN
    Comput Biol Med; 2006 Oct; 36(10):1126-42. PubMed ID: 16246320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finding consistent disease subnetworks across microarray datasets.
    Soh D; Dong D; Guo Y; Wong L
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S15. PubMed ID: 22372958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal approach for classification of acute leukemia subtypes based on gene expression data.
    Cho JH; Lee D; Park JH; Kim K; Lee IB
    Biotechnol Prog; 2002; 18(4):847-54. PubMed ID: 12153320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical programming approach for gene selection and tissue classification.
    Sun M; Xiong M
    Bioinformatics; 2003 Jul; 19(10):1243-51. PubMed ID: 12835268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of significance scores of unweighted Gene Set Enrichment Analyses.
    Keller A; Backes C; Lenhof HP
    BMC Bioinformatics; 2007 Aug; 8():290. PubMed ID: 17683603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Many accurate small-discriminatory feature subsets exist in microarray transcript data: biomarker discovery.
    Grate LR
    BMC Bioinformatics; 2005 Apr; 6():97. PubMed ID: 15826317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 1353.