These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16199518)

  • 1. Changes in hydrogen-bond strengths explain reduction potentials in 10 rubredoxin variants.
    Lin IJ; Gebel EB; Machonkin TE; Westler WM; Markley JL
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14581-6. PubMed ID: 16199518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between hydrogen bond lengths and reduction potentials in Clostridium pasteurianum rubredoxin.
    Lin IJ; Gebel EB; Machonkin TE; Westler WM; Markley JL
    J Am Chem Soc; 2003 Feb; 125(6):1464-5. PubMed ID: 12568591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic studies of V44 mutants of Clostridium pasteurianum rubredoxin: effects of side-chain size on reduction potential.
    Park IY; Eidsness MK; Lin IJ; Gebel EB; Youn B; Harley JL; Machonkin TE; Frederick RO; Markley JL; Smith ET; Ichiye T; Kang C
    Proteins; 2004 Nov; 57(3):618-25. PubMed ID: 15382226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation.
    Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q
    J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein.
    Dauter Z; Wilson KS; Sieker LC; Moulis JM; Meyer J
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8836-40. PubMed ID: 8799113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unique hydrogen bonded water in the reduced form of Clostridium pasteurianum rubredoxin and its possible role in electron transfer.
    Park IY; Youn B; Harley JL; Eidsness MK; Smith E; Ichiye T; Kang C
    J Biol Inorg Chem; 2004 Jun; 9(4):423-8. PubMed ID: 15067525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen bonds in rubredoxins from mesophilic and hyperthermophilic organisms.
    Bougault CM; Eidsness MK; Prestegard JH
    Biochemistry; 2003 Apr; 42(15):4357-72. PubMed ID: 12693931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions.
    Yelle RB; Park NS; Ichiye T
    Proteins; 1995 Jun; 22(2):154-67. PubMed ID: 7567963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of the [FeII(SCys)4] site to the thermostability of rubredoxins.
    Bonomi F; Eidsness MK; Iametti S; Kurtz DM; Mazzini S; Morleo A
    J Biol Inorg Chem; 2004 Apr; 9(3):297-306. PubMed ID: 14770302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies.
    Chang FC; Swenson RP
    Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus.
    Day MW; Hsu BT; Joshua-Tor L; Park JB; Zhou ZH; Adams MW; Rees DC
    Protein Sci; 1992 Nov; 1(11):1494-507. PubMed ID: 1303768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation of the surface valine residues 8 and 44 in the rubredoxin from Clostridium pasteurianum: solvent access versus structural changes as determinants of reversible potential.
    Xiao Z; Maher MJ; Cross M; Bond CS; Guss JM; Wedd AG
    J Biol Inorg Chem; 2000 Feb; 5(1):75-84. PubMed ID: 10766439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of a zinc substituted eukaryotic rubredoxin from the cryptomonad alga Guillardia theta.
    Schweimer K; Hoffmann S; Wastl J; Maier UG; Rösch P; Sticht H
    Protein Sci; 2000 Aug; 9(8):1474-86. PubMed ID: 10975569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox thermodynamics of mutant forms of the rubredoxin from Clostridiumpasteurianum: identification of a stable Fe(III)(S-Cys)3(OH) centre in the C6S mutant.
    Xiao Z; Gardner AR; Cross M; Maes EM; Czernuszewicz RS; Sola M; Wedd AG
    J Biol Inorg Chem; 2001 Jun; 6(5-6):638-49. PubMed ID: 11472027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the redox potential of the [Fe(SCys)(4)] site in rubredoxin by the orientation of a peptide dipole.
    Eidsness MK; Burden AE; Richie KA; Kurtz DM; Scott RA; Smith ET; Ichiye T; Beard B; Min T; Kang C
    Biochemistry; 1999 Nov; 38(45):14803-9. PubMed ID: 10555962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrahigh-resolution study on Pyrococcus abyssi rubredoxin: II. Introduction of an O-H...Sgamma-Fe hydrogen bond increased the reduction potential by 65 mV.
    Bönisch H; Schmidt CL; Bianco P; Ladenstein R
    J Biol Inorg Chem; 2007 Nov; 12(8):1163-71. PubMed ID: 17712580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of NMRD to hydration of rubredoxin and a variant containing a (Cys-S)3FeIII(OH) site.
    Bertini I; Luchinat C; Nerinovski K; Parigi G; Cross M; Xiao Z; Wedd AG
    Biophys J; 2003 Jan; 84(1):545-51. PubMed ID: 12524306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of rubredoxin reveals the molecular basis of its electron transfer properties.
    Kümmerle R; Zhuang-Jackson H; Gaillard J; Moulis JM
    Biochemistry; 1997 Dec; 36(50):15983-91. PubMed ID: 9398333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen bond strength modulates the mechanical strength of ferric-thiolate bonds in rubredoxin.
    Zheng P; Takayama SJ; Mauk AG; Li H
    J Am Chem Soc; 2012 Mar; 134(9):4124-31. PubMed ID: 22309227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a mutated rubredoxin with a cysteine ligand of the iron replaced by serine.
    Meyer J; Gaillard J; Lutz M
    Biochem Biophys Res Commun; 1995 Jul; 212(3):827-33. PubMed ID: 7626117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.