BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 16200073)

  • 21. Mutagenesis, genotoxicity, and repair of 1-methyladenine, 3-alkylcytosines, 1-methylguanine, and 3-methylthymine in alkB Escherichia coli.
    Delaney JC; Essigmann JM
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14051-6. PubMed ID: 15381779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Escherichia coli single-stranded DNA binding protein SSB promotes AlkB-mediated DNA dealkylation repair.
    Nigam R; Anindya R
    Biochem Biophys Res Commun; 2018 Feb; 496(2):274-279. PubMed ID: 29326044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human DNA glycosylase enzyme TDG repairs thymine mispaired with exocyclic etheno-DNA adducts.
    Goto M; Shinmura K; Matsushima Y; Ishino K; Yamada H; Totsuka Y; Matsuda T; Nakagama H; Sugimura H
    Free Radic Biol Med; 2014 Nov; 76():136-46. PubMed ID: 25151120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alkylpurine-DNA-N-glycosylase excision of 7-(hydroxymethyl)-1,N6-ethenoadenine, a glycidaldehyde-derived DNA adduct.
    Wang P; Guliaev AB; Elder RH; Hang B
    DNA Repair (Amst); 2006 Jan; 5(1):23-31. PubMed ID: 16290249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3,N4-ethenocytosine, a highly mutagenic adduct, is a primary substrate for Escherichia coli double-stranded uracil-DNA glycosylase and human mismatch-specific thymine-DNA glycosylase.
    Saparbaev M; Laval J
    Proc Natl Acad Sci U S A; 1998 Jul; 95(15):8508-13. PubMed ID: 9671708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AlkB dioxygenase preferentially repairs protonated substrates: specificity against exocyclic adducts and molecular mechanism of action.
    Maciejewska AM; Poznanski J; Kaczmarska Z; Krowisz B; Nieminuszczy J; Polkowska-Nowakowska A; Grzesiuk E; Kusmierek JT
    J Biol Chem; 2013 Jan; 288(1):432-41. PubMed ID: 23148216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AlkB homologue 2-mediated repair of ethenoadenine lesions in mammalian DNA.
    Ringvoll J; Moen MN; Nordstrand LM; Meira LB; Pang B; Bekkelund A; Dedon PC; Bjelland S; Samson LD; Falnes PØ; Klungland A
    Cancer Res; 2008 Jun; 68(11):4142-9. PubMed ID: 18519673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel activity of Escherichia coli mismatch uracil-DNA glycosylase (Mug) excising 8-(hydroxymethyl)-3,N4-ethenocytosine, a potential product resulting from glycidaldehyde reaction.
    Hang B; Downing G; Guliaev AB; Singer B
    Biochemistry; 2002 Feb; 41(7):2158-65. PubMed ID: 11841206
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive Response Enzyme AlkB Preferentially Repairs 1-Methylguanine and 3-Methylthymine Adducts in Double-Stranded DNA.
    Chen F; Tang Q; Bian K; Humulock ZT; Yang X; Jost M; Drennan CL; Essigmann JM; Li D
    Chem Res Toxicol; 2016 Apr; 29(4):687-93. PubMed ID: 26919079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minimal methylated substrate and extended substrate range of Escherichia coli AlkB protein, a 1-methyladenine-DNA dioxygenase.
    Koivisto P; Duncan T; Lindahl T; Sedgwick B
    J Biol Chem; 2003 Nov; 278(45):44348-54. PubMed ID: 12944387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence-specific generation of 1,N(6)-ethenoadenine and 3,N(4)-ethenocytosine in single-stranded unmodified DNA.
    Egloff D; Oleinich IA; Freisinger E
    ACS Chem Biol; 2015 Feb; 10(2):547-53. PubMed ID: 25402665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical rearrangement and repair pathways of 1,N6-ethenoadenine.
    Speina E; Kierzek AM; Tudek B
    Mutat Res; 2003 Oct; 531(1-2):205-17. PubMed ID: 14637256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversal of DNA alkylation damage by two human dioxygenases.
    Duncan T; Trewick SC; Koivisto P; Bates PA; Lindahl T; Sedgwick B
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16660-5. PubMed ID: 12486230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AlkB influences the chloroacetaldehyde-induced mutation spectra and toxicity in the pSP189 supF shuttle vector.
    Kim MY; Zhou X; Delaney JC; Taghizadeh K; Dedon PC; Essigmann JM; Wogan GN
    Chem Res Toxicol; 2007 Aug; 20(8):1075-83. PubMed ID: 17658757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron-catalysed oxidation intermediates captured in a DNA repair dioxygenase.
    Yi C; Jia G; Hou G; Dai Q; Zhang W; Zheng G; Jian X; Yang CG; Cui Q; He C
    Nature; 2010 Nov; 468(7321):330-3. PubMed ID: 21068844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB.
    Yu B; Edstrom WC; Benach J; Hamuro Y; Weber PC; Gibney BR; Hunt JF
    Nature; 2006 Feb; 439(7078):879-84. PubMed ID: 16482161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioinformatic mapping of AlkB homology domains in viruses.
    Bratlie MS; Drabløs F
    BMC Genomics; 2005 Jan; 6():1. PubMed ID: 15627404
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical Characterization of AP Lyase and m
    Müller TA; Tobar MA; Perian MN; Hausinger RP
    Biochemistry; 2017 Apr; 56(13):1899-1910. PubMed ID: 28290676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid peroxidation in face of DNA damage, DNA repair and other cellular processes.
    Tudek B; Zdżalik-Bielecka D; Tudek A; Kosicki K; Fabisiewicz A; Speina E
    Free Radic Biol Med; 2017 Jun; 107():77-89. PubMed ID: 27908783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted deletion of alkylpurine-DNA-N-glycosylase in mice eliminates repair of 1,N6-ethenoadenine and hypoxanthine but not of 3,N4-ethenocytosine or 8-oxoguanine.
    Hang B; Singer B; Margison GP; Elder RH
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12869-74. PubMed ID: 9371767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.