BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16200521)

  • 1. Possible integration of upstream signals at Cdc42 in filamentous differentiation of S. cerevisiae.
    Wu X; Jiang YW
    Yeast; 2005 Oct; 22(13):1069-77. PubMed ID: 16200521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of S. cerevisiae filamentous differentiation by slowed DNA synthesis involves Mec1, Rad53 and Swe1 checkpoint proteins.
    Jiang YW; Kang CM
    Mol Biol Cell; 2003 Dec; 14(12):5116-24. PubMed ID: 14565980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic/genomic evidence for a key role of polarized endocytosis in filamentous differentiation of S. cerevisiae.
    Wu X; Jiang YW
    Yeast; 2005 Oct; 22(14):1143-53. PubMed ID: 16240455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MPK1 gene is required for filamentous growth induced by isoamyl alcohol in Saccharomyces cerevisiae strains from the alcoholic fermentation.
    Vancetto GT; Ceccato-Antonini SR
    Appl Microbiol Biotechnol; 2007 May; 75(1):111-5. PubMed ID: 17245577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compartmentalization of the functions and regulation of the mitotic cyclin Clb2 in S. cerevisiae.
    Eluère R; Offner N; Varlet I; Motteux O; Signon L; Picard A; Bailly E; Simon MN
    J Cell Sci; 2007 Feb; 120(Pt 4):702-11. PubMed ID: 17264146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth.
    Ahn SH; Acurio A; Kron SJ
    Mol Biol Cell; 1999 Oct; 10(10):3301-16. PubMed ID: 10512868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae.
    Mösch HU; Roberts RL; Fink GR
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5352-6. PubMed ID: 8643578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Cdc42-Cla4 interaction in the pheromone response of Saccharomyces cerevisiae.
    Heinrich M; Köhler T; Mösch HU
    Eukaryot Cell; 2007 Feb; 6(2):317-27. PubMed ID: 17189484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal integration in budding yeast.
    Waltermann C; Klipp E
    Biochem Soc Trans; 2010 Oct; 38(5):1257-64. PubMed ID: 20863295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans.
    Biswas K; Morschhäuser J
    Mol Microbiol; 2005 May; 56(3):649-69. PubMed ID: 15819622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae.
    Van de Velde S; Thevelein JM
    Eukaryot Cell; 2008 Feb; 7(2):286-93. PubMed ID: 17890371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ras recruits mitotic exit regulator Lte1 to the bud cortex in budding yeast.
    Yoshida S; Ichihashi R; Toh-e A
    J Cell Biol; 2003 Jun; 161(5):889-97. PubMed ID: 12782684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1.
    Park YU; Hur H; Ka M; Kim J
    Eukaryot Cell; 2006 Dec; 5(12):2120-7. PubMed ID: 17041186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoplasmic Clb2 is required for timely inactivation of the mitotic inhibitor Swe1 and normal bud morphogenesis in Saccharomyces cerevisiae.
    Hood-DeGrenier JK; Boulton CN; Lyo V
    Curr Genet; 2007 Jan; 51(1):1-18. PubMed ID: 17033818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tRNA modification complex elongator regulates the Cdc42-dependent mitogen-activated protein kinase pathway that controls filamentous growth in yeast.
    Abdullah U; Cullen PJ
    Eukaryot Cell; 2009 Sep; 8(9):1362-72. PubMed ID: 19633267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide survey of non-essential genes required for slowed DNA synthesis-induced filamentous growth in yeast.
    Kang CM; Jiang YW
    Yeast; 2005 Jan; 22(2):79-90. PubMed ID: 15645503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression.
    Sengupta N; Vinod PK; Venkatesh KV
    Biophys Chem; 2007 Jan; 125(1):59-71. PubMed ID: 16863676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rot1 plays an antagonistic role to Clb2 in actin cytoskeleton dynamics throughout the cell cycle.
    Juanes MA; Queralt E; Bañó MC; Igual JC
    J Cell Sci; 2007 Jul; 120(Pt 14):2390-401. PubMed ID: 17606994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RAM pathway contributes to Rpb4 dependent pseudohyphal differentiation in Saccharomyces cerevisiae.
    Verma-Gaur J; Deshpande S; Sadhale PP
    Fungal Genet Biol; 2008 Oct; 45(10):1373-9. PubMed ID: 18687406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An upstream regulator and downstream target of phospholipase D1 activity during pheromone response in Saccharomyces cerevisiae.
    Harkins AL; London SD; Dolan JW
    FEMS Yeast Res; 2008 Mar; 8(2):237-44. PubMed ID: 18036176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.