These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1620055)

  • 41. Measurement of electron density in dual-energy x-ray CT with monochromatic x rays and evaluation of its accuracy.
    Tsunoo T; Torikoshi M; Ohno Y; Uesugi K; Yagi N
    Med Phys; 2008 Nov; 35(11):4924-32. PubMed ID: 19070226
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dual-Energy Computed Tomography for the Characterization of Intracranial Hemorrhage and Calcification: A Systematic Approach in a Phantom System.
    Nute JL; Jacobsen MC; Chandler A; Cody DD; Schellingerhout D
    Invest Radiol; 2017 Jan; 52(1):30-41. PubMed ID: 27379697
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tissue-equivalent materials for construction of tomographic dosimetry phantoms in pediatric radiology.
    Jones AK; Hintenlang DE; Bolch WE
    Med Phys; 2003 Aug; 30(8):2072-81. PubMed ID: 12945973
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A method for selective tissue and bone visualization using dual energy scanned projection radiography.
    Brody WR; Butt G; Hall A; Macovski A
    Med Phys; 1981; 8(3):353-7. PubMed ID: 7033756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Beam hardening: analytical considerations of the effective attenuation coefficient of X-ray tomography.
    Alles J; Mudde RF
    Med Phys; 2007 Jul; 34(7):2882-9. PubMed ID: 17821996
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analytic and quantitative exposition of patient-specific systematic inaccuracies inherent in planar DXA-derived in vivo BMD measurements.
    Bolotin HH
    Med Phys; 1998 Feb; 25(2):139-51. PubMed ID: 9507473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CT energy weighting in the presence of scatter and limited energy resolution.
    Schmidt TG
    Med Phys; 2010 Mar; 37(3):1056-67. PubMed ID: 20384241
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization of a calibration phantom for quantitative radiography.
    Martinez C; de Molina C; Desco M; Abella M
    Med Phys; 2021 Mar; 48(3):1039-1053. PubMed ID: 33283889
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generalized image combinations in dual KVP digital radiography.
    Lehmann LA; Alvarez RE; Macovski A; Brody WR; Pelc NJ; Riederer SJ; Hall AL
    Med Phys; 1981; 8(5):659-67. PubMed ID: 7290019
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tissue analysis by dual-energy computed tomography.
    Hawkes DJ; Jackson DF; Parker RP
    Br J Radiol; 1986 Jun; 59(702):537-42. PubMed ID: 3708262
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI.
    Marshall HR; Patrick J; Laidley D; Prato FS; Butler J; Théberge J; Thompson RT; Stodilka RZ
    Med Phys; 2013 Aug; 40(8):082509. PubMed ID: 23927354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Laplace reconstruction of experimental diagnostic x-ray spectra.
    Archer BR; Fewell TR; Wagner LK
    Med Phys; 1988; 15(6):832-7. PubMed ID: 3237139
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual-energy x-ray approach for object/energy-specific attenuation coefficient correction in single-photon emission computed tomography: effects of contrast agent.
    Goh KL; Liew SC
    J Med Imaging (Bellingham); 2021 Sep; 8(5):052106. PubMed ID: 34084871
    [No Abstract]   [Full Text] [Related]  

  • 55. Attenuation of 4-20 MV x rays by a new compensator material of cement.
    Thomsen MS; Ulsø N
    Med Phys; 2002 Oct; 29(10):2427-32. PubMed ID: 12408317
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A theoretical comparison of tissue parameter extraction methods for dual energy computed tomography.
    Tremblay JÉ; Bedwani S; Bouchard H
    Med Phys; 2014 Aug; 41(8):081905. PubMed ID: 25086536
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative assessment of dual-photon absorptiometry and dual-energy radiography.
    Glüer CC; Steiger P; Selvidge R; Elliesen-Kliefoth K; Hayashi C; Genant HK
    Radiology; 1990 Jan; 174(1):223-8. PubMed ID: 2294552
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simulation studies of dual-energy x-ray absorptiometry.
    Sorenson JA; Duke PR; Smith SW
    Med Phys; 1989; 16(1):75-80. PubMed ID: 2921984
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of equivalent photon energy calibration methods in computed tomography.
    Judy PF; Adler GJ
    Med Phys; 1980; 7(6):685-91. PubMed ID: 7464712
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An examination of mass thickness measurements with X-ray sources.
    Mincong C; Hongmei L; Ziyu C; Ji S
    Appl Radiat Isot; 2008 Oct; 66(10):1387-91. PubMed ID: 18550378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.