BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 16200564)

  • 1. Prospective correction of affine motion for arbitrary MR sequences on a clinical scanner.
    Nehrke K; Börnert P
    Magn Reson Med; 2005 Nov; 54(5):1130-8. PubMed ID: 16200564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel prospective respiratory motion correction approach for free-breathing coronary MR angiography using a patient-adapted affine motion model.
    Manke D; Nehrke K; Börnert P
    Magn Reson Med; 2003 Jul; 50(1):122-31. PubMed ID: 12815687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Registering spherical navigators with spherical harmonic expansions to measure three-dimensional rotations in magnetic resonance imaging.
    Costa AF; Yen YF; Drangova M
    Magn Reson Imaging; 2010 Feb; 28(2):185-94. PubMed ID: 19755205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method of generalized projections algorithm for image-based reduction of artifacts in radial imaging.
    Lee KJ; Paley MN; Griffiths PD; Wild JM
    Magn Reson Med; 2005 Jul; 54(1):246-50. PubMed ID: 15968656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous coordinates in motion correction.
    Zahneisen B; Ernst T
    Magn Reson Med; 2016 Jan; 75(1):274-9. PubMed ID: 25648318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation.
    Henningsson M; Prieto C; Chiribiri A; Vaillant G; Razavi R; Botnar RM
    Magn Reson Med; 2014 Jan; 71(1):173-81. PubMed ID: 23400902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel and partial Fourier imaging with prospective motion correction.
    Banerjee S; Beatty PJ; Zhang JZ; Shankaranarayanan A
    Magn Reson Med; 2013 Feb; 69(2):421-33. PubMed ID: 22488750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new framework for interleaved scanning in cardiovascular MR: Application to image-based respiratory motion correction in coronary MR angiography.
    Henningsson M; Mens G; Koken P; Smink J; Botnar RM
    Magn Reson Med; 2015 Feb; 73(2):692-6. PubMed ID: 24639003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion correction using an enhanced floating navigator and GRAPPA operations.
    Lin W; Huang F; Börnert P; Li Y; Reykowski A
    Magn Reson Med; 2010 Feb; 63(2):339-48. PubMed ID: 19918907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time rigid body motion correction and shimming using cloverleaf navigators.
    van der Kouwe AJ; Benner T; Dale AM
    Magn Reson Med; 2006 Nov; 56(5):1019-32. PubMed ID: 17029223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution dynamic MR imaging of the thorax for respiratory motion correction of PET using groupwise manifold alignment.
    Baumgartner CF; Kolbitsch C; Balfour DR; Marsden PK; McClelland JR; Rueckert D; King AP
    Med Image Anal; 2014 Oct; 18(7):939-52. PubMed ID: 24972374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous acquisition of image and navigator slices using CAIPIRINHA for 4D MRI.
    Celicanin Z; Bieri O; Preiswerk F; Cattin P; Scheffler K; Santini F
    Magn Reson Med; 2015 Feb; 73(2):669-76. PubMed ID: 24604250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advantages and limitations of prospective head motion compensation for MRI using an optical motion tracking device.
    Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G
    Acad Radiol; 2006 Sep; 13(9):1093-103. PubMed ID: 16935721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Referenceless reconstruction of spatiotemporally encoded imaging data: principles and applications to real-time MRI.
    Seginer A; Schmidt R; Leftin A; Solomon E; Frydman L
    Magn Reson Med; 2014 Dec; 72(6):1687-95. PubMed ID: 24420445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective head motion correction using FID-guided on-demand image navigators.
    Waszak M; Falkovskiy P; Hilbert T; Bonnier G; Maréchal B; Meuli R; Gruetter R; Kober T; Krueger G
    Magn Reson Med; 2017 Jul; 78(1):193-203. PubMed ID: 27529516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collapsed fat navigators for brain 3D rigid body motion.
    Engström M; Mårtensson M; Avventi E; Norbeck O; Skare S
    Magn Reson Imaging; 2015 Oct; 33(8):984-91. PubMed ID: 26117701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging.
    Ai T; Padua A; Goerner F; Nittka M; Gugala Z; Jadhav S; Trelles M; Johnson RF; Lindsey RW; Li X; Runge VM
    Invest Radiol; 2012 May; 47(5):267-76. PubMed ID: 22266987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between intensity standardization and inhomogeneity correction in MR image processing.
    Madabhushi A; Udupa JK
    IEEE Trans Med Imaging; 2005 May; 24(5):561-76. PubMed ID: 15889544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel reconstruction method for three-dimensional axial continuously moving table whole-body magnetic resonance imaging featuring autocalibrated parallel imaging GRAPPA.
    Zenge MO; Ladd ME; Quick HH
    Magn Reson Med; 2009 Apr; 61(4):867-73. PubMed ID: 19189291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospective head motion compensation for MRI by updating the gradients and radio frequency during data acquisition.
    Dold C; Zaitsev M; Speck O; Firle EA; Hennig J; Sakas G
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):482-9. PubMed ID: 16685881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.