BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 16201794)

  • 1. Thiourea-based bifunctional organocatalysis: supramolecular recognition for living polymerization.
    Dove AP; Pratt RC; Lohmeijer BG; Waymouth RM; Hedrick JL
    J Am Chem Soc; 2005 Oct; 127(40):13798-9. PubMed ID: 16201794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An activated equivalent of lactide toward organocatalytic ring-opening polymerization.
    Thillaye du Boullay O; Marchal E; Martin-Vaca B; Cossío FP; Bourissou D
    J Am Chem Soc; 2006 Dec; 128(51):16442-3. PubMed ID: 17177360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic insights into acid/base conjugates: highly selective bifunctional catalysts for the ring-opening polymerization of lactide.
    Coady DJ; Fukushima K; Horn HW; Rice JE; Hedrick JL
    Chem Commun (Camb); 2011 Mar; 47(11):3105-7. PubMed ID: 21258732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active conformation in amine-thiourea bifunctional organocatalysis preformed by catalyst aggregation.
    Tárkányi G; Király P; Soós T; Varga S
    Chemistry; 2012 Feb; 18(7):1918-22. PubMed ID: 22262570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edge-to-face CH/pi aromatic interaction and molecular self-recognition in epi-cinchona-based bifunctional thiourea organocatalysis.
    Tárkányi G; Király P; Varga S; Vakulya B; Soós T
    Chemistry; 2008; 14(20):6078-86. PubMed ID: 18504723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural optimization of thiourea-based bifunctional organocatalysts for the highly enantioselective dynamic kinetic resolution of azlactones.
    Berkessel A; Mukherjee S; Müller TN; Cleemann F; Roland K; Brandenburg M; Neudörfl JM; Lex J
    Org Biomol Chem; 2006 Dec; 4(23):4319-30. PubMed ID: 17102877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantio- and diastereoselective asymmetric addition of 1,3-dicarbonyl compounds to nitroalkenes in a doubly stereocontrolled manner catalyzed by bifunctional rosin-derived amine thiourea catalysts.
    Jiang X; Zhang Y; Liu X; Zhang G; Lai L; Wu L; Zhang J; Wang R
    J Org Chem; 2009 Aug; 74(15):5562-7. PubMed ID: 19552379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organocatalytic ring opening polymerization of trimethylene carbonate.
    Nederberg F; Lohmeijer BG; Leibfarth F; Pratt RC; Choi J; Dove AP; Waymouth RM; Hedrick JL
    Biomacromolecules; 2007 Jan; 8(1):153-60. PubMed ID: 17206801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organocatalytic approach to amphiphilic comb-block copolymers capable of stereocomplexation and self-assembly.
    Fukushima K; Pratt RC; Nederberg F; Tan JP; Yang YY; Waymouth RM; Hedrick JL
    Biomacromolecules; 2008 Nov; 9(11):3051-6. PubMed ID: 18844407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bifunctional primary amine-thiourea-TfOH (BPAT·TfOH) as a chiral phase-transfer catalyst: the asymmetric synthesis of dihydropyrimidines.
    Wang Y; Yu J; Miao Z; Chen R
    Org Biomol Chem; 2011 Apr; 9(8):3050-4. PubMed ID: 21394354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monomer versus alcohol activation in the 4-dimethylaminopyridine-catalyzed ring-opening polymerization of lactide and lactic O-carboxylic anhydride.
    Bonduelle C; Martín-Vaca B; Cossío FP; Bourissou D
    Chemistry; 2008; 14(17):5304-12. PubMed ID: 18446916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly enantioselective synthesis of gamma-nitro heteroaromatic ketones in a doubly stereocontrolled manner catalyzed by bifunctional thiourea catalysts based on dehydroabietic amine: a doubly stereocontrolled approach to pyrrolidine carboxylic acids.
    Jiang X; Zhang Y; Chan AS; Wang R
    Org Lett; 2009 Jan; 11(1):153-6. PubMed ID: 19067569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New ground for organic catalysis: a ring-opening polymerization approach to hydrogels.
    Nederberg F; Trang V; Pratt RC; Mason AF; Frank CW; Waymouth RM; Hedrick JL
    Biomacromolecules; 2007 Nov; 8(11):3294-7. PubMed ID: 17994785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of bifunctional thiourea/secondary-amine organocatalysts for the highly stereoselective nitro-Mannich reaction of alpha-substituted nitroacetates.
    Han B; Liu QP; Li R; Tian X; Xiong XF; Deng JG; Chen YC
    Chemistry; 2008; 14(27):8094-7. PubMed ID: 18655092
    [No Abstract]   [Full Text] [Related]  

  • 15. Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation.
    Osten KM; Mehrkhodavandi P
    Acc Chem Res; 2017 Nov; 50(11):2861-2869. PubMed ID: 29087695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly active chiral indium catalyst for living lactide polymerization.
    Douglas AF; Patrick BO; Mehrkhodavandi P
    Angew Chem Int Ed Engl; 2008; 47(12):2290-3. PubMed ID: 18273846
    [No Abstract]   [Full Text] [Related]  

  • 17. Ring-opening polymerization of cyclic esters by cyclodextrins.
    Harada A; Osaki M; Takashima Y; Yamaguchi H
    Acc Chem Res; 2008 Sep; 41(9):1143-52. PubMed ID: 18690725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoswitchable ring-opening polymerization of lactide catalyzed by azobenzene-based thiourea.
    Dai Z; Cui Y; Chen C; Wu J
    Chem Commun (Camb); 2016 Jul; 52(57):8826-9. PubMed ID: 27345287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-component catalyst/initiators for the organocatalytic ring-opening polymerization of lactide.
    Csihony S; Culkin DA; Sentman AC; Dove AP; Waymouth RM; Hedrick JL
    J Am Chem Soc; 2005 Jun; 127(25):9079-84. PubMed ID: 15969586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem metal-coordination copolymerization and organocatalytic ring-opening polymerization via water to synthesize diblock copolymers of styrene oxide/CO2 and lactide.
    Wu GP; Darensbourg DJ; Lu XB
    J Am Chem Soc; 2012 Oct; 134(42):17739-45. PubMed ID: 23016983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.