BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 16201803)

  • 1. How enzyme dynamics helps catalyze a reaction in atomic detail: a transition path sampling study.
    Basner JE; Schwartz SD
    J Am Chem Soc; 2005 Oct; 127(40):13822-31. PubMed ID: 16201803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical analysis of rate constants and kinetic isotope effects corresponding to different reactant valleys in lactate dehydrogenase.
    Ferrer S; Tuñón I; Martí S; Moliner V; Garcia-Viloca M; Gonzalez-Lafont A; Lluch JM
    J Am Chem Soc; 2006 Dec; 128(51):16851-63. PubMed ID: 17177436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition path sampling study of the conformational fluctuation of His-64 in human carbonic anhydrase II.
    Roy A; Taraphder S
    J Phys Chem B; 2009 Sep; 113(37):12555-64. PubMed ID: 19685901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transition path sampling study of the reaction catalyzed by the enzyme chorismate mutase.
    Crehuet R; Field MJ
    J Phys Chem B; 2007 May; 111(20):5708-18. PubMed ID: 17474768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring reaction pathways with transition path and umbrella sampling: application to methyl maltoside.
    Dimelow RJ; Bryce RA; Masters AJ; Hillier IH; Burton NA
    J Chem Phys; 2006 Mar; 124(11):114113. PubMed ID: 16555880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct determination of reaction paths and stationary points on potential of mean force surfaces.
    Li G; Cui Q
    J Mol Graph Model; 2005 Oct; 24(2):82-93. PubMed ID: 16005650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freezing a single distal motion in dihydrofolate reductase.
    Sergi A; Watney JB; Wong KF; Hammes-Schiffer S
    J Phys Chem B; 2006 Feb; 110(5):2435-41. PubMed ID: 16471835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydride transfer catalyzed by xylose isomerase: mechanism and quantum effects.
    Garcia-Viloca M; Alhambra C; Truhlar DG; Gao J
    J Comput Chem; 2003 Jan; 24(2):177-90. PubMed ID: 12497598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction coordinate of an enzymatic reaction revealed by transition path sampling.
    Quaytman SL; Schwartz SD
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12253-8. PubMed ID: 17640885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical study of the catalytic mechanism of formate dehydrogenase.
    Castillo R; Oliva M; Martí S; Moliner V
    J Phys Chem B; 2008 Aug; 112(32):10012-22. PubMed ID: 18646819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming barriers in trajectory space: mechanism and kinetics of rare events via Wang-Landau enhanced transition path sampling.
    Borrero EE; Dellago C
    J Chem Phys; 2010 Oct; 133(13):134112. PubMed ID: 20942528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase.
    Watney JB; Hammes-Schiffer S
    J Phys Chem B; 2006 May; 110(20):10130-8. PubMed ID: 16706474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison studies of the human heart and Bacillus stearothermophilus lactate dehydrogreanse by transition path sampling.
    Quaytman SL; Schwartz SD
    J Phys Chem A; 2009 Mar; 113(10):1892-7. PubMed ID: 19053545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realistic modeling of ruthenium-catalyzed transfer hydrogenation.
    Handgraaf JW; Meijer EJ
    J Am Chem Soc; 2007 Mar; 129(11):3099-103. PubMed ID: 17319655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.
    Dzierlenga MW; Antoniou D; Schwartz SD
    J Phys Chem Lett; 2015 Apr; 6(7):1177-81. PubMed ID: 26262969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of initial trajectories for transition path sampling of chemical reactions with ab initio molecular dynamics.
    Rowley CN; Woo TK
    J Chem Phys; 2007 Jan; 126(2):024110. PubMed ID: 17228946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unprejudiced identification of reaction mechanisms from biased transition path sampling.
    Zahn D
    J Chem Phys; 2005 Jul; 123(4):044104. PubMed ID: 16095343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved transition path sampling methods for simulation of rare events.
    Chopra M; Malshe R; Reddy AS; de Pablo JJ
    J Chem Phys; 2008 Apr; 128(14):144104. PubMed ID: 18412420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path ensembles and path sampling in nonequilibrium stochastic systems.
    Harland B; Sun SX
    J Chem Phys; 2007 Sep; 127(10):104103. PubMed ID: 17867733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.