BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 16201910)

  • 1. Technical improvements in the computational target search for antisense oligonucleotides.
    Far RK; Leppert J; Frank K; Sczakiel G
    Oligonucleotides; 2005; 15(3):223-33. PubMed ID: 16201910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concepts to automate the theoretical design of effective antisense oligonucleotides.
    Far RK; Nedbal W; Sczakiel G
    Bioinformatics; 2001 Nov; 17(11):1058-61. PubMed ID: 11724735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A potent inhibitor of prothrombin gene expression as a result of standardized target site selection and design of antisense oligonucleotides.
    Böhl M; Schwenzer B
    Oligonucleotides; 2005; 15(3):172-82. PubMed ID: 16201905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides.
    Kretschmer-Kazemi Far R; Sczakiel G
    Nucleic Acids Res; 2003 Aug; 31(15):4417-24. PubMed ID: 12888501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local RNA target structure influences siRNA efficacy: a systematic global analysis.
    Overhoff M; Alken M; Far RK; Lemaitre M; Lebleu B; Sczakiel G; Robbins I
    J Mol Biol; 2005 May; 348(4):871-81. PubMed ID: 15843019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability.
    Patzel V; Steidl U; Kronenwett R; Haas R; Sczakiel G
    Nucleic Acids Res; 1999 Nov; 27(22):4328-34. PubMed ID: 10536139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TargetFinder: a software for antisense oligonucleotide target site selection based on MAST and secondary structures of target mRNA.
    Bo X; Wang S
    Bioinformatics; 2005 Apr; 21(8):1401-2. PubMed ID: 15598838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Suitable Target Regions and Analyzing Off-Target Effects of Therapeutic Oligonucleotides.
    Pedersen L; Hagedorn PH; Koch T
    Methods Mol Biol; 2019; 2036():261-282. PubMed ID: 31410803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations in mRNA content have no effect on the potency of antisense oligonucleotides.
    Miraglia L; Watt AT; Graham MJ; Crooke ST
    Antisense Nucleic Acid Drug Dev; 2000 Dec; 10(6):453-61. PubMed ID: 11198929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational identification of antisense oligonucleotides that rapidly hybridize to RNA.
    Wang JY; Drlica K
    Oligonucleotides; 2004; 14(3):167-75. PubMed ID: 15625912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic selectivity of complementary nucleic acids: bcr-abl-directed antisense RNA and ribozymes.
    Kronenwett R; Haas R; Sczakiel G
    J Mol Biol; 1996 Jun; 259(4):632-44. PubMed ID: 8683570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical and experimental approaches to design effective antisense oligonucleotides.
    Sczakiel G
    Front Biosci; 2000 Jan; 5():D194-201. PubMed ID: 10702382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of antisense oligonucleotides and short interfering RNA duplexes (siRNA) targeted to BCL6 mRNA: towards rational drug development for specific lymphoma subsets.
    Kalota A; Opalinska JB
    Blood Cells Mol Dis; 2007; 38(3):199-203. PubMed ID: 17254814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic search for natural antisense transcripts in eukaryotes (review).
    Røsok O; Sioud M
    Int J Mol Med; 2005 Feb; 15(2):197-203. PubMed ID: 15647831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformationally restricted carbohydrate-modified nucleic acids and antisense technology.
    Herdewijn P
    Biochim Biophys Acta; 1999 Dec; 1489(1):167-79. PubMed ID: 10807006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AOBase: a database for antisense oligonucleotides selection and design.
    Bo X; Lou S; Sun D; Yang J; Wang S
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D664-7. PubMed ID: 16381954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bispecific antisense oligonucleotides have activity comparable to monospecifics in inhibiting expression of BCL-2 in LNCaP cells.
    Rubenstein M; Guinan P
    In Vivo; 2010; 24(4):489-93. PubMed ID: 20668314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method for prediction of accessible sites on an mRNA sequence for target selection of hammerhead ribozymes.
    Mercatanti A; Rainaldi G; Mariani L; Marangoni R; Citti L
    J Comput Biol; 2002; 9(4):641-53. PubMed ID: 12323098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Computer aid design of antisense oligonucleotide in gene therapy--review].
    Wu QW; Wu JJ
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2004 Jun; 12(3):387-91. PubMed ID: 15228675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.