These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 16201910)

  • 41. Exceptionally stable nucleic acid hairpins.
    Varani G
    Annu Rev Biophys Biomol Struct; 1995; 24():379-404. PubMed ID: 7545040
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Facilitating oligonucleotide delivery: helping antisense deliver on its promise.
    Gewirtz AM; Stein CA; Glazer PM
    Proc Natl Acad Sci U S A; 1996 Apr; 93(8):3161-3. PubMed ID: 8622906
    [No Abstract]   [Full Text] [Related]  

  • 43. Elucidation of gene function using C-5 propyne antisense oligonucleotides.
    Flanagan WM; Su LL; Wagner RW
    Nat Biotechnol; 1996 Sep; 14(9):1139-45. PubMed ID: 9631067
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism of antisense oligonucleotide interaction with natural RNAs.
    Serikov R; Petyuk V; Vorobijev Y; Koval V; Fedorova O; Vlassov V; Zenkova M
    J Biomol Struct Dyn; 2011 Aug; 29(1):27-50. PubMed ID: 21696224
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hairpin antisense oligonucleotides containing 2'-methoxynucleosides with base-pairing in the stem region at the 3'-end: penetration, localization, and Anti-HIV activity.
    Kuwasaki T; Hosono K; Takai K; Ushijima K; Nakashima H; Saito T; Yamamoto N; Takaku H
    Biochem Biophys Res Commun; 1996 Nov; 228(2):623-31. PubMed ID: 8920960
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of VEGF mRNA by 2'-O,4'-C-ethylene-bridged nucleic acids (ENA) antisense oligonucleotides and their influence on off-target gene expressions.
    Morita K; Yamate K; Kurakata S; Abe K; Watanabe K; Koizumi M; Imanishi T
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(4-6):503-21. PubMed ID: 16838842
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Central administration of small interfering RNAs in rats: a comparison with antisense oligonucleotides.
    Senn C; Hangartner C; Moes S; Guerini D; Hofbauer KG
    Eur J Pharmacol; 2005 Oct; 522(1-3):30-7. PubMed ID: 16213482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Natural antisense RNA/target RNA interactions: possible models for antisense oligonucleotide drug design.
    Delihas N; Rokita SE; Zheng P
    Nat Biotechnol; 1997 Aug; 15(8):751-3. PubMed ID: 9255788
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of angiogenesis in vitro by alphav integrin-directed antisense oligonucleotides.
    Kronenwett R; Gräf T; Nedbal W; Weber M; Steidl U; Rohr UP; Möhler T; Haas R
    Cancer Gene Ther; 2002 Jul; 9(7):587-96. PubMed ID: 12082459
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advantages of antisense drugs for the treatment of oral diseases.
    Nedbal W; Teichmann B
    Antisense Nucleic Acid Drug Dev; 2002 Jun; 12(3):183-91. PubMed ID: 12162701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How to design an antisense oligodeoxynucleotide experiment: a consensus approach.
    Stein CA
    Antisense Nucleic Acid Drug Dev; 1998 Apr; 8(2):129-32. PubMed ID: 9593051
    [No Abstract]   [Full Text] [Related]  

  • 52. Influence of mRNA self-structure on hybridization: computational tools for antisense sequence selection.
    Toschi N
    Methods; 2000 Nov; 22(3):261-9. PubMed ID: 11071822
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming.
    Saetrom P
    Bioinformatics; 2004 Nov; 20(17):3055-63. PubMed ID: 15201190
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selection of antisense oligonucleotides on the basis of genomic frequency of the target sequence.
    Han J; Zhu Z; Hsu C; Finley WH
    Antisense Res Dev; 1994; 4(1):53-65. PubMed ID: 8061516
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solving the RNA design problem with reinforcement learning.
    Eastman P; Shi J; Ramsundar B; Pande VS
    PLoS Comput Biol; 2018 Jun; 14(6):e1006176. PubMed ID: 29927936
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of an oral formulation for ICAM-1 antisense oligonucleotides.
    Stepkowski SM; Chen W; Geary R; Wang ME; Condon T; Stecker K; Bennett CF
    Transplant Proc; 2001; 33(1-2):387. PubMed ID: 11266874
    [No Abstract]   [Full Text] [Related]  

  • 57. Molecule auto-correction to facilitate molecular design.
    Kerstjens A; De Winter H
    J Comput Aided Mol Des; 2024 Feb; 38(1):10. PubMed ID: 38363377
    [TBL] [Abstract][Full Text] [Related]  

  • 58. "New Physical Insights" in Theoretical and Computational Studies.
    Crawford TD; McCoy AB
    J Phys Chem A; 2017 Jul; 121(26):4850. PubMed ID: 28679212
    [No Abstract]   [Full Text] [Related]  

  • 59. PFRED: A computational platform for siRNA and antisense oligonucleotides design.
    Sciabola S; Xi H; Cruz D; Cao Q; Lawrence C; Zhang T; Rotstein S; Hughes JD; Caffrey DR; Stanton RV
    PLoS One; 2021; 16(1):e0238753. PubMed ID: 33481821
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.