These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 16202231)
41. Pathways of electron transfer and proton translocation in the action of superoxide dismutase dimer. Ramasarma T; Vaigundan D Biochem Biophys Res Commun; 2019 Jun; 514(3):772-776. PubMed ID: 31079924 [TBL] [Abstract][Full Text] [Related]
42. DNA cleavage mediated by copper superoxide dismutase via two pathways. Han Y; Shen T; Jiang W; Xia Q; Liu C J Inorg Biochem; 2007 Feb; 101(2):214-24. PubMed ID: 17070914 [TBL] [Abstract][Full Text] [Related]
43. Thermal stability and redox properties of M. tuberculosis CuSOD. D'Orazio M; Cervoni L; Giartosio A; Rotilio G; Battistoni A Arch Biochem Biophys; 2009 Jun; 486(2):119-24. PubMed ID: 19383490 [TBL] [Abstract][Full Text] [Related]
44. Catalytic and structural role of a metal-free histidine residue in bovine Cu-Zn superoxide dismutase. Toyama A; Takahashi Y; Takeuchi H Biochemistry; 2004 Apr; 43(16):4670-9. PubMed ID: 15096035 [TBL] [Abstract][Full Text] [Related]
45. The dual nature of human extracellular superoxide dismutase: one sequence and two structures. Petersen SV; Oury TD; Valnickova Z; Thøgersen IB; Højrup P; Crapo JD; Enghild JJ Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13875-80. PubMed ID: 14615576 [TBL] [Abstract][Full Text] [Related]
46. Multiple replacements of glutamine 143 in human manganese superoxide dismutase: effects on structure, stability, and catalysis. Lévêque VJ; Stroupe ME; Lepock JR; Cabelli DE; Tainer JA; Nick HS; Silverman DN Biochemistry; 2000 Jun; 39(24):7131-7. PubMed ID: 10852710 [TBL] [Abstract][Full Text] [Related]
47. A novel Cu,Zn superoxide dismutase from the fungal strain Humicola lutea 110: isolation and physico-chemical characterization. Dolashka-Angelova P; Angelova M; Genova L; Stoeva S; Voelter W Spectrochim Acta A Mol Biomol Spectrosc; 1999 Sep; 55A(11):2249-60. PubMed ID: 10581736 [TBL] [Abstract][Full Text] [Related]
48. A thermostable manganese-containing superoxide dismutase from pathogen Chlamydia pneumoniae. Yu J; Yu X; Liu J FEBS Lett; 2004 Mar; 562(1-3):22-6. PubMed ID: 15043996 [TBL] [Abstract][Full Text] [Related]
49. A structural view of the dissociation of Escherichia coli tryptophanase. Green K; Qasim N; Gdaelvsky G; Kogan A; Goldgur Y; Parola AH; Lotan O; Almog O Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2364-71. PubMed ID: 26627645 [TBL] [Abstract][Full Text] [Related]
50. Common dynamical signatures of familial amyotrophic lateral sclerosis-associated structurally diverse Cu, Zn superoxide dismutase mutants. Khare SD; Dokholyan NV Proc Natl Acad Sci U S A; 2006 Feb; 103(9):3147-52. PubMed ID: 16488975 [TBL] [Abstract][Full Text] [Related]
51. Zinc binding modulates the entire folding free energy surface of human Cu,Zn superoxide dismutase. Kayatekin C; Zitzewitz JA; Matthews CR J Mol Biol; 2008 Dec; 384(2):540-55. PubMed ID: 18840448 [TBL] [Abstract][Full Text] [Related]
52. Functional and crystallographic characterization of Salmonella typhimurium Cu,Zn superoxide dismutase coded by the sodCI virulence gene. Pesce A; Battistoni A; Stroppolo ME; Polizio F; Nardini M; Kroll JS; Langford PR; O'Neill P; Sette M; Desideri A; Bolognesi M J Mol Biol; 2000 Sep; 302(2):465-78. PubMed ID: 10970746 [TBL] [Abstract][Full Text] [Related]
53. A novel superoxide dismutase from Cicer arietinum L. seedlings: isolation, purification and characterization. Singh S; Singh AN; Verma A; Dubey VK Protein Pept Lett; 2013 Jul; 20(7):741-8. PubMed ID: 22789105 [TBL] [Abstract][Full Text] [Related]
54. Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: analysis of structure and thermostability. Ursby T; Adinolfi BS; Al-Karadaghi S; De Vendittis E; Bocchini V J Mol Biol; 1999 Feb; 286(1):189-205. PubMed ID: 9931259 [TBL] [Abstract][Full Text] [Related]
55. The Cu,Zn superoxide dismutase from Escherichia coli retains monomeric structure at high protein concentration. Evidence for altered subunit interaction in all the bacteriocupreins. Battistoni A; Folcarelli S; Gabbianelli R; Capo C; Rotilio G Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):713-6. PubMed ID: 9003353 [TBL] [Abstract][Full Text] [Related]
56. A superoxide dismutase purified from the roots from Stemona tuberosa. Niyomploy P; Boonsombat R; Karnchanatat A; Sangvanich P Prep Biochem Biotechnol; 2014 Oct; 44(7):663-79. PubMed ID: 24279794 [TBL] [Abstract][Full Text] [Related]
57. Biochemical characterization of a cambialistic superoxide dismutase isozyme from diatom Thallassiosira weissflogii: cloning, expression, and enzyme stability. Huang JK; Wen L; Ma H; Huang ZX; Lin CT J Agric Food Chem; 2005 Aug; 53(16):6319-25. PubMed ID: 16076113 [TBL] [Abstract][Full Text] [Related]
58. A highly stable cambialistic-superoxide dismutase from Antrodia camphorata: expression in yeast and enzyme properties. Liau YJ; Wen L; Shaw JF; Lin CT J Biotechnol; 2007 Aug; 131(1):84-91. PubMed ID: 17604867 [TBL] [Abstract][Full Text] [Related]
59. Dismutation properties of purified and GDA modified CuZnSOD from chicken heart. Demirel LA; Tarhan L Artif Cells Blood Substit Immobil Biotechnol; 2004; 32(4):609-24. PubMed ID: 15974187 [TBL] [Abstract][Full Text] [Related]
60. Trifluoroethanol-induced activity and structural changes in bos taurus copper- and zinc-containing superoxide dismutase. Shi L; Xia Y; Zhang M; Yin SJ; Si YX; Qian GY; Lü ZR; Zhou HM; Park D; Chng G; Zou F; Park YD Protein Pept Lett; 2011 Jul; 18(7):726-32. PubMed ID: 21342091 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]