These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16202512)

  • 1. Method of laser activated nano-thermolysis for elimination of tumor cells.
    Lapotko D; Lukianova E; Potapnev M; Aleinikova O; Oraevsky A
    Cancer Lett; 2006 Jul; 239(1):36-45. PubMed ID: 16202512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy.
    Zharov VP; Galitovskaya EN; Johnson C; Kelly T
    Lasers Surg Med; 2005 Sep; 37(3):219-26. PubMed ID: 16175635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles.
    Lapotko DO; Lukianova E; Oraevsky AA
    Lasers Surg Med; 2006 Jul; 38(6):631-42. PubMed ID: 16736503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LANTCET: elimination of solid tumor cells with photothermal bubbles generated around clusters of gold nanoparticles.
    Hleb EY; Hafner JH; Myers JN; Hanna EY; Rostro BC; Zhdanok SA; Lapotko DO
    Nanomedicine (Lond); 2008 Oct; 3(5):647-67. PubMed ID: 18817468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles.
    Zharov VP; Mercer KE; Galitovskaya EN; Smeltzer MS
    Biophys J; 2006 Jan; 90(2):619-27. PubMed ID: 16239330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy.
    Van de Broek B; Devoogdt N; D'Hollander A; Gijs HL; Jans K; Lagae L; Muyldermans S; Maes G; Borghs G
    ACS Nano; 2011 Jun; 5(6):4319-28. PubMed ID: 21609027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal bubbles as optical scattering probes for imaging living cells.
    Hleb EY; Hu Y; Drezek RA; Hafner JH; Lapotko DO
    Nanomedicine (Lond); 2008 Dec; 3(6):797-812. PubMed ID: 19025454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells.
    Liu T; Tian J; Chen Z; Liang Y; Liu J; Liu S; Li H; Zhan J; Yang X
    Nanotechnology; 2014 Aug; 25(34):345103. PubMed ID: 25102337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral evaluation of laser-induced cell damage with photothermal microscopy.
    Lapotko DO; Zharov VP
    Lasers Surg Med; 2005 Jan; 36(1):22-30. PubMed ID: 15662629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer.
    Letfullin RR; Joenathan C; George TF; Zharov VP
    Nanomedicine (Lond); 2006 Dec; 1(4):473-80. PubMed ID: 17716149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Infrared-Activated Nanocalorifiers in Microcapsules: Vapor Bubble Generation for In Vivo Enhanced Cancer Therapy.
    Shao J; Xuan M; Dai L; Si T; Li J; He Q
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12782-7. PubMed ID: 26306782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods.
    Huang YF; Sefah K; Bamrungsap S; Chang HT; Tan W
    Langmuir; 2008 Oct; 24(20):11860-5. PubMed ID: 18817428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-induced bubbles in living cells.
    Lapotko DO
    Lasers Surg Med; 2006 Mar; 38(3):240-8. PubMed ID: 16470847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser.
    Li B; Zhang Y; Zou R; Wang Q; Zhang B; An L; Yin F; Hua Y; Hu J
    Dalton Trans; 2014 Apr; 43(16):6244-50. PubMed ID: 24598863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable nanostructures as photothermal theranostic agents.
    Young JK; Figueroa ER; Drezek RA
    Ann Biomed Eng; 2012 Feb; 40(2):438-59. PubMed ID: 22134466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-targeted photofabrication of gold nanoparticles inside cells.
    Smith NI; Mochizuki K; Niioka H; Ichikawa S; Pavillon N; Hobro AJ; Ando J; Fujita K; Kumagai Y
    Nat Commun; 2014 Oct; 5():5144. PubMed ID: 25298313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser nanothermolysis of human leukemia cells using functionalized plasmonic nanoparticles.
    Liopo AV; Conjusteau A; Konopleva M; Andreeff M; Oraevsky AA
    Nano Biomed Eng; 2012; 4(2):66-75. PubMed ID: 22720194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced imaging and accelerated photothermalysis of A549 human lung cancer cells by gold nanospheres.
    Liu X; Lloyd MC; Fedorenko IV; Bapat P; Zhukov T; Huo Q
    Nanomedicine (Lond); 2008 Oct; 3(5):617-26. PubMed ID: 18817466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Au-Polymer Nanostructures for Multiphoton Imaging, Prodrug Delivery, and Chemo-Photothermal Therapy Platforms.
    Huang CC; Liu TM
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25259-69. PubMed ID: 26501876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.