These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 16202580)
1. Interaction of chlorine concentration and shear stress on chlorine consumption, biofilm growth rate and particle number. Tsai YP Bioresour Technol; 2006 Oct; 97(15):1912-9. PubMed ID: 16202580 [TBL] [Abstract][Full Text] [Related]
2. Characteristics of biofilm community formed in the chlorinated biodegradable organic matter-limited tap water. Park SK; Lee SH; Choi SC; Kim YK Environ Technol; 2006 Apr; 27(4):377-86. PubMed ID: 16583822 [TBL] [Abstract][Full Text] [Related]
3. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition. Tsai YP J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710 [TBL] [Abstract][Full Text] [Related]
4. The impacts of the AOC concentration on biofilm formation under higher shear force condition. Tsai YP; Pai TY; Qiu JM J Biotechnol; 2004 Jul; 111(2):155-67. PubMed ID: 15219402 [TBL] [Abstract][Full Text] [Related]
5. Involvement of humic substances in regrowth. Camper AK Int J Food Microbiol; 2004 May; 92(3):355-64. PubMed ID: 15145594 [TBL] [Abstract][Full Text] [Related]
6. Monitoring biofilm detachment under dynamic changes in shear stress using laser-based particle size analysis and mass fractionation. Choi YC; Morgenroth E Water Sci Technol; 2003; 47(5):69-76. PubMed ID: 12701909 [TBL] [Abstract][Full Text] [Related]
7. Impact of flow velocity on the dynamic behaviour of biofilm bacteria. Tsai YP Biofouling; 2005; 21(5-6):267-77. PubMed ID: 16522540 [TBL] [Abstract][Full Text] [Related]
8. Role of discontinuous chlorination on microbial production by drinking water biofilms. Codony F; Morató J; Mas J Water Res; 2005 May; 39(9):1896-906. PubMed ID: 15899288 [TBL] [Abstract][Full Text] [Related]
9. Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system. Lee DG; Park SJ; Kim SJ J Microbiol Biotechnol; 2007 Sep; 17(9):1558-62. PubMed ID: 18062238 [TBL] [Abstract][Full Text] [Related]
10. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Duddu R; Chopp DL; Moran B Biotechnol Bioeng; 2009 May; 103(1):92-104. PubMed ID: 19213021 [TBL] [Abstract][Full Text] [Related]
11. Factors affecting bulk to total bacteria ratio in drinking water distribution systems. Srinivasan S; Harrington GW; Xagoraraki I; Goel R Water Res; 2008 Jul; 42(13):3393-404. PubMed ID: 18541283 [TBL] [Abstract][Full Text] [Related]
12. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Horn H; Reiff H; Morgenroth E Biotechnol Bioeng; 2003 Mar; 81(5):607-17. PubMed ID: 12514810 [TBL] [Abstract][Full Text] [Related]
13. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Picioreanu C; van Loosdrecht MC; Heijnen JJ Biotechnol Bioeng; 2001 Jan; 72(2):205-18. PubMed ID: 11114658 [TBL] [Abstract][Full Text] [Related]
14. Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system. Ndiongue S; Huck PM; Slawson RM Water Res; 2005 Mar; 39(6):953-64. PubMed ID: 15766950 [TBL] [Abstract][Full Text] [Related]
15. Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm. Elenter D; Milferstedt K; Zhang W; Hausner M; Morgenroth E Water Res; 2007 Dec; 41(20):4657-71. PubMed ID: 17655911 [TBL] [Abstract][Full Text] [Related]
16. Influence of biofilms on iron and manganese deposition in drinking water distribution systems. Ginige MP; Wylie J; Plumb J Biofouling; 2011 Feb; 27(2):151-63. PubMed ID: 21229405 [TBL] [Abstract][Full Text] [Related]
17. Growth, structure and oxygen penetration in particle supported autotrophic biofilms. Boessmann M; Neu TR; Horn H; Hempel DC Water Sci Technol; 2004; 49(11-12):371-7. PubMed ID: 15303764 [TBL] [Abstract][Full Text] [Related]
18. Effect of chlorine, biodegradable dissolved organic carbon and suspended bacteria on biofilm development in drinking water systems. Codony F; Morato J; Ribas F; Mas J J Basic Microbiol; 2002; 42(5):311-9. PubMed ID: 12362402 [TBL] [Abstract][Full Text] [Related]
19. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers. Paris T; Skali-Lami S; Block JC Biotechnol Bioeng; 2007 Aug; 97(6):1550-61. PubMed ID: 17216655 [TBL] [Abstract][Full Text] [Related]
20. Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection. Eberl HJ; Sudarsan R J Theor Biol; 2008 Aug; 253(4):788-807. PubMed ID: 18547590 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]