These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 16203711)
1. Elevated atmospheric CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Kogawara S; Norisada M; Tange T; Yagi H; Kojima K Tree Physiol; 2006 Jan; 26(1):25-33. PubMed ID: 16203711 [TBL] [Abstract][Full Text] [Related]
2. Growth and nutrient uptake of ectomycorrhizal Pinus sylvestris seedlings in a natural substrate treated with elevated Al concentrations. Ahonen-Jonnarth U; Göransson A; Finlay RD Tree Physiol; 2003 Feb; 23(3):157-67. PubMed ID: 12566266 [TBL] [Abstract][Full Text] [Related]
3. Phosphorus supply affects the photosynthetic capacity of loblolly pine grown in elevated carbon dioxide. Lewis JD; Griffin KL; Thomas RB; Strain BR Tree Physiol; 1994 Nov; 14(11):1229-44. PubMed ID: 14967614 [TBL] [Abstract][Full Text] [Related]
4. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369 [TBL] [Abstract][Full Text] [Related]
5. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua. Constable JV; Bassirirad H; Lussenhop J; Zerihun A Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652 [TBL] [Abstract][Full Text] [Related]
6. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine. Chang CY; Fréchette E; Unda F; Mansfield SD; Ensminger I Plant Physiol; 2016 Oct; 172(2):802-818. PubMed ID: 27591187 [TBL] [Abstract][Full Text] [Related]
7. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings. Zhang S; Dang QL Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153 [TBL] [Abstract][Full Text] [Related]
9. The effects of co-colonising ectomycorrhizal fungi on mycorrhizal colonisation and sporocarp formation in Laccaria japonica colonising seedlings of Pinus densiflora. Zhang S; Vaario LM; Xia Y; Matsushita N; Geng Q; Tsuruta M; Kurokochi H; Lian C Mycorrhiza; 2019 May; 29(3):207-218. PubMed ID: 30953171 [TBL] [Abstract][Full Text] [Related]
10. Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition. Bücking H; Heyser W Mycorrhiza; 2003 Apr; 13(2):59-68. PubMed ID: 12682827 [TBL] [Abstract][Full Text] [Related]
11. Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments. Shi L; Wang J; Liu B; Nara K; Lian C; Shen Z; Xia Y; Chen Y Mycorrhiza; 2017 Nov; 27(8):823-830. PubMed ID: 28840358 [TBL] [Abstract][Full Text] [Related]
12. Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis. Weigt RB; Raidl S; Verma R; Rodenkirchen H; Göttlein A; Agerer R Mycorrhiza; 2011 Jul; 21(5):375-391. PubMed ID: 21107870 [TBL] [Abstract][Full Text] [Related]
13. Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils. Chen Y; Nara K; Wen Z; Shi L; Xia Y; Shen Z; Lian C Mycorrhiza; 2015 Oct; 25(7):561-71. PubMed ID: 25720735 [TBL] [Abstract][Full Text] [Related]
14. A Cr(VI)-tolerant strain, Pisolithus sp1, with a high accumulation capacity of Cr in mycelium and highly efficient assisting Pinus thunbergii for phytoremediation. Shi L; Deng X; Yang Y; Jia Q; Wang C; Shen Z; Chen Y Chemosphere; 2019 Jun; 224():862-872. PubMed ID: 30852466 [TBL] [Abstract][Full Text] [Related]
15. Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Niemi K; Vuorinen T; Ernstsen A; Häggman H Tree Physiol; 2002 Dec; 22(17):1231-9. PubMed ID: 12464576 [TBL] [Abstract][Full Text] [Related]
16. Interaction of nutrient limitation and elevated CO2 concentration on carbon assimilation of a tropical tree seedling (Cedrela odorata). Carswell FE; Grace J; Lucas ME; Jarvis PG Tree Physiol; 2000 Aug; 20(14):977-86. PubMed ID: 11303573 [TBL] [Abstract][Full Text] [Related]
17. Mycelial production, spread and root colonisation by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2. Fransson PM; Taylor AF; Finlay RD Mycorrhiza; 2005 Jan; 15(1):25-31. PubMed ID: 14750001 [TBL] [Abstract][Full Text] [Related]
18. Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Fomina M; Charnock JM; Hillier S; Alexander IJ; Gadd GM Microb Ecol; 2006 Aug; 52(2):322-33. PubMed ID: 16710792 [TBL] [Abstract][Full Text] [Related]
19. Biochemical acclimation patterns of Betula pendula and Pinus sylvestris seedlings to elevated carbon dioxide concentrations. Juurola E Tree Physiol; 2003 Feb; 23(2):85-95. PubMed ID: 12533303 [TBL] [Abstract][Full Text] [Related]
20. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. Ford CR; Wurzburger N; Hendrick RL; Teskey RO Tree Physiol; 2007 Mar; 27(3):375-83. PubMed ID: 17241979 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]