BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 16203733)

  • 1. Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells.
    Guerra L; Fanelli T; Favia M; Riccardi SM; Busco G; Cardone RA; Carrabino S; Weinman EJ; Reshkin SJ; Conese M; Casavola V
    J Biol Chem; 2005 Dec; 280(49):40925-33. PubMed ID: 16203733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta-oestradiol rescues DeltaF508CFTR functional expression in human cystic fibrosis airway CFBE41o- cells through the up-regulation of NHERF1.
    Fanelli T; Cardone RA; Favia M; Guerra L; Zaccolo M; Monterisi S; De Santis T; Riccardi SM; Reshkin SJ; Casavola V
    Biol Cell; 2008 Jul; 100(7):399-412. PubMed ID: 18184109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o- cells.
    Favia M; Guerra L; Fanelli T; Cardone RA; Monterisi S; Di Sole F; Castellani S; Chen M; Seidler U; Reshkin SJ; Conese M; Casavola V
    Mol Biol Cell; 2010 Jan; 21(1):73-86. PubMed ID: 19889841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NHERF1 and CFTR restore tight junction organisation and function in cystic fibrosis airway epithelial cells: role of ezrin and the RhoA/ROCK pathway.
    Castellani S; Guerra L; Favia M; Di Gioia S; Casavola V; Conese M
    Lab Invest; 2012 Nov; 92(11):1527-40. PubMed ID: 22964850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFTR regulation in human airway epithelial cells requires integrity of the actin cytoskeleton and compartmentalized cAMP and PKA activity.
    Monterisi S; Favia M; Guerra L; Cardone RA; Marzulli D; Reshkin SJ; Casavola V; Zaccolo M
    J Cell Sci; 2012 Mar; 125(Pt 5):1106-17. PubMed ID: 22302988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1- and PKCε-dependent manner.
    Alshafie W; Chappe FG; Li M; Anini Y; Chappe VM
    Am J Physiol Cell Physiol; 2014 Jul; 307(1):C107-19. PubMed ID: 24788249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the C terminus and Na+/H+ exchanger regulatory factor in the functional expression of cystic fibrosis transmembrane conductance regulator in nonpolarized cells and epithelia.
    Benharouga M; Sharma M; So J; Haardt M; Drzymala L; Popov M; Schwapach B; Grinstein S; Du K; Lukacs GL
    J Biol Chem; 2003 Jun; 278(24):22079-89. PubMed ID: 12651858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paracellular transport through healthy and cystic fibrosis bronchial epithelial cell lines--do we have a proper model?
    Molenda N; Urbanova K; Weiser N; Kusche-Vihrog K; Günzel D; Schillers H
    PLoS One; 2014; 9(6):e100621. PubMed ID: 24945658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. β1, β2, and β3 adrenoceptors and Na+/H+ exchanger regulatory factor 1 expression in human bronchi and their modifications in cystic fibrosis.
    Bossard F; Silantieff E; Lavazais-Blancou E; Robay A; Sagan C; Rozec B; Gauthier C
    Am J Respir Cell Mol Biol; 2011 Jan; 44(1):91-8. PubMed ID: 20203292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia.
    Kreda SM; Mall M; Mengos A; Rochelle L; Yankaskas J; Riordan JR; Boucher RC
    Mol Biol Cell; 2005 May; 16(5):2154-67. PubMed ID: 15716351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cystic fibrosis transmembrane conductance regulator-mRNA delivery: a novel alternative for cystic fibrosis gene therapy.
    Bangel-Ruland N; Tomczak K; Fernández Fernández E; Leier G; Leciejewski B; Rudolph C; Rosenecker J; Weber WM
    J Gene Med; 2013; 15(11-12):414-26. PubMed ID: 24123772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the scaffold protein RACK1 in apical expression of CFTR.
    Auerbach M; Liedtke CM
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C294-304. PubMed ID: 17409124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells.
    Sun F; Hug MJ; Lewarchik CM; Yun CH; Bradbury NA; Frizzell RA
    J Biol Chem; 2000 Sep; 275(38):29539-46. PubMed ID: 10893422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal protein kinase A regulatory interactions between cystic fibrosis transmembrane conductance regulator and Na+/H+ exchanger isoform 3 in a renal polarized epithelial cell model.
    Bagorda A; Guerra L; Di Sole F; Hemle-Kolb C; Cardone RA; Fanelli T; Reshkin SJ; Gisler SM; Murer H; Casavola V
    J Biol Chem; 2002 Jun; 277(24):21480-8. PubMed ID: 11937500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint.
    Loureiro CA; Matos AM; Dias-Alves Â; Pereira JF; Uliyakina I; Barros P; Amaral MD; Matos P
    Sci Signal; 2015 May; 8(377):ra48. PubMed ID: 25990958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells.
    Costa de Beauregard MA; Edelman A; Chesnoy-Marchais D; Tondelier D; Lapillonne A; El Marjou F; Robine S; Louvard D
    Eur J Cell Biol; 2000 Nov; 79(11):795-802. PubMed ID: 11139142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NHE-RF1 protein rescues DeltaF508-CFTR function.
    Bossard F; Robay A; Toumaniantz G; Dahimene S; Becq F; Merot J; Gauthier C
    Am J Physiol Lung Cell Mol Physiol; 2007 May; 292(5):L1085-94. PubMed ID: 17237149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The short apical membrane half-life of rescued {Delta}F508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of {Delta}F508-CFTR in polarized human airway epithelial cells.
    Swiatecka-Urban A; Brown A; Moreau-Marquis S; Renuka J; Coutermarsh B; Barnaby R; Karlson KH; Flotte TR; Fukuda M; Langford GM; Stanton BA
    J Biol Chem; 2005 Nov; 280(44):36762-72. PubMed ID: 16131493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of cystic fibrosis transmembrane conductance regulator in chloride secretory epithelia.
    Denning GM; Ostedgaard LS; Cheng SH; Smith AE; Welsh MJ
    J Clin Invest; 1992 Jan; 89(1):339-49. PubMed ID: 1370301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium.
    Oglesby IK; Chotirmall SH; McElvaney NG; Greene CM
    J Immunol; 2013 Apr; 190(7):3354-62. PubMed ID: 23436935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.