BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 16203808)

  • 1. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression.
    Tang QS; Zhang DS; Cong XM; Wan ML; Jin LQ
    Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Magnetically based enhancement of nanoparticle uptake in tumor cells: combination of magnetically induced cell labeling and magnetic heating].
    Kettering M; Winter J; Zeisberger M; Alexiou C; Bremer-Streck S; Bergemann C; Kaiser WA; Hilger I
    Rofo; 2006 Dec; 178(12):1255-60. PubMed ID: 17136650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges in the development of magnetic particles for therapeutic applications.
    Barry SE
    Int J Hyperthermia; 2008 Sep; 24(6):451-66. PubMed ID: 18608583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy.
    DeNardo SJ; DeNardo GL; Miers LA; Natarajan A; Foreman AR; Gruettner C; Adamson GN; Ivkov R
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7087s-7092s. PubMed ID: 16203807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy.
    Hou CH; Hou SM; Hsueh YS; Lin J; Wu HC; Lin FH
    Biomaterials; 2009 Aug; 30(23-24):3956-60. PubMed ID: 19446329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line.
    Liu JY; Zhao LY; Wang YY; Li DY; Tao D; Li LY; Tang JT
    Oncol Rep; 2012 Mar; 27(3):791-7. PubMed ID: 22200741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient temperature rise in a mouse due to low-frequency regional hyperthermia.
    Trakic A; Liu F; Crozier S
    Phys Med Biol; 2006 Apr; 51(7):1673-91. PubMed ID: 16552097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells.
    Wang X; Chen Y; Huang C; Wang X; Zhao L; Zhang X; Tang J
    Bioelectromagnetics; 2013 Feb; 34(2):95-103. PubMed ID: 23059525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF--induced thermoablative therapy for human breast cancer in mice.
    DeNardo SJ; DeNardo GL; Natarajan A; Miers LA; Foreman AR; Gruettner C; Adamson GN; Ivkov R
    J Nucl Med; 2007 Mar; 48(3):437-44. PubMed ID: 17332622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of new heating method of hepatic parenchyma using a sintered MgFe2O4 needle under an alternating magnetic field.
    Sato K; Watanabe Y; Horiuchi A; Yukumi S; Doi T; Yoshida M; Yamamoto Y; Tsunooka N; Kawachi K
    J Surg Res; 2008 May; 146(1):110-6. PubMed ID: 18155250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma.
    Tanaka K; Ito A; Kobayashi T; Kawamura T; Shimada S; Matsumoto K; Saida T; Honda H
    J Biosci Bioeng; 2005 Jul; 100(1):112-5. PubMed ID: 16233860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a second-generation radiofrequency ablation using sintered MgFe(2)O(4) needles and alternating magnetic field for human cancer therapy.
    Watanabe Y; Sato K; Yukumi S; Yoshida M; Yamamoto Y; Doi T; Sugishita H; Naohara T; Maehara T; Aono H; Kawachi K
    Biomed Mater Eng; 2009; 19(2-3):101-10. PubMed ID: 19581703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes.
    Kikumori T; Kobayashi T; Sawaki M; Imai T
    Breast Cancer Res Treat; 2009 Feb; 113(3):435-41. PubMed ID: 18311580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.
    Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy.
    Meenach SA; Hilt JZ; Anderson KW
    Acta Biomater; 2010 Mar; 6(3):1039-46. PubMed ID: 19840875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.