BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 16203808)

  • 21. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles.
    Wang L; Dong J; Ouyang W; Wang X; Tang J
    Oncol Rep; 2012 Mar; 27(3):719-26. PubMed ID: 22134718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect.
    Hayashi K; Ono K; Suzuki H; Sawada M; Moriya M; Sakamoto W; Yogo T
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1903-11. PubMed ID: 20568697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitigation of magnetic particle hyperthermia side effects by magnetic field controls.
    Tsiapla AR; Kalimeri AA; Maniotis N; Myrovali E; Samaras T; Angelakeris M; Kalogirou O
    Int J Hyperthermia; 2021; 38(1):511-522. PubMed ID: 33784924
    [No Abstract]   [Full Text] [Related]  

  • 25. Novel tumor-ablation device for liver tumors utilizing heat energy generated under an alternating magnetic field.
    Sato K; Watanabe Y; Horiuchi A; Yukumi S; Doi T; Yoshida M; Yamamoto Y; Maehara T; Naohara T; Kawachi K
    J Gastroenterol Hepatol; 2008 Jul; 23(7 Pt 1):1105-11. PubMed ID: 18444992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia.
    Zhao DL; Zhang HL; Zeng XW; Xia QS; Tang JT
    Biomed Mater; 2006 Dec; 1(4):198-201. PubMed ID: 18458406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic mesoporous silica spheres for hyperthermia therapy.
    Martín-Saavedra FM; Ruíz-Hernández E; Boré A; Arcos D; Vallet-Regí M; Vilaboa N
    Acta Biomater; 2010 Dec; 6(12):4522-31. PubMed ID: 20601238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical applications of magnetic nanoparticles for hyperthermia.
    Thiesen B; Jordan A
    Int J Hyperthermia; 2008 Sep; 24(6):467-74. PubMed ID: 18608593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.
    Piao D; Towner RA; Smith N; Chen WR
    Med Phys; 2013 Jun; 40(6):063301. PubMed ID: 23718611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Modulation of cardiac rhythms in humans exposed to extremely weak alternating magnetic fields].
    Lednev VV; Belova NA; Ermakov AM; Akimov EB; Tonevitskiĭ AG
    Biofizika; 2008; 53(6):1129-37. PubMed ID: 19137702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants.
    Stauffer PR; Sneed PK; Hashemi H; Phillips TL
    IEEE Trans Biomed Eng; 1994 Jan; 41(1):17-28. PubMed ID: 8200664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.
    Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D
    J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles.
    Ito A; Tanaka K; Honda H; Abe S; Yamaguchi H; Kobayashi T
    J Biosci Bioeng; 2003; 96(4):364-9. PubMed ID: 16233538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vivo heating of magnetic nanoparticles in alternating magnetic field.
    Babincová M; Altanerová V; Altaner C; Cicmanec P; Babinec P
    Med Phys; 2004 Aug; 31(8):2219-21. PubMed ID: 15377087
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular level loading and heating of superparamagnetic iron oxide nanoparticles.
    Kalambur VS; Longmire EK; Bischof JC
    Langmuir; 2007 Nov; 23(24):12329-36. PubMed ID: 17960940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regional hyperthermia by magnetic induction in a beagle dog model: analysis of thermal dosimetry.
    Oleson JR; Assaad A; Dewhirst MW; DeYoung DW; Grochowski KJ; Sim DA
    Radiat Res; 1984 Jun; 98(3):445-55. PubMed ID: 6729045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of pulsed magnetic stimulation on tumor development and immune functions in mice.
    Yamaguchi S; Ogiue-Ikeda M; Sekino M; Ueno S
    Bioelectromagnetics; 2006 Jan; 27(1):64-72. PubMed ID: 16304693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia.
    Le Renard PE; Jordan O; Faes A; Petri-Fink A; Hofmann H; Rüfenacht D; Bosman F; Buchegger F; Doelker E
    Biomaterials; 2010 Feb; 31(4):691-705. PubMed ID: 19878991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glass-ceramic-mediated, magnetic-field-induced localized hyperthermia: response of a murine mammary carcinoma.
    Luderer AA; Borrelli NF; Panzarino JN; Mansfield GR; Hess DM; Brown JL; Barnett EH; Hahn EW
    Radiat Res; 1983 Apr; 94(1):190-8. PubMed ID: 6856765
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.