These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16203982)

  • 1. Characterization of the folding landscape of monomeric lactose repressor: quantitative comparison of theory and experiment.
    Das P; Wilson CJ; Fossati G; Wittung-Stafshede P; Matthews KS; Clementi C
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14569-74. PubMed ID: 16203982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The experimental folding landscape of monomeric lactose repressor, a large two-domain protein, involves two kinetic intermediates.
    Wilson CJ; Das P; Clementi C; Matthews KS; Wittung-Stafshede P
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14563-8. PubMed ID: 16203983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The folding energy landscape of the dimerization domain of Escherichia coli Trp repressor: a joint experimental and theoretical investigation.
    Simler BR; Levy Y; Onuchic JN; Matthews CR
    J Mol Biol; 2006 Oct; 363(1):262-78. PubMed ID: 16956620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding.
    Wilson CJ; Zhan H; Swint-Kruse L; Matthews KS
    Cell Mol Life Sci; 2007 Jan; 64(1):3-16. PubMed ID: 17103112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and characterization of monomeric tryptophan repressor: a model for an early intermediate in the folding of a dimeric protein.
    Shao X; Hensley P; Matthews CR
    Biochemistry; 1997 Aug; 36(32):9941-9. PubMed ID: 9245428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic analysis of unfolding and dissociation in lactose repressor protein.
    Barry JK; Matthews KS
    Biochemistry; 1999 May; 38(20):6520-8. PubMed ID: 10350470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein folding dynamics: quantitative comparison between theory and experiment.
    Burton RE; Myers JK; Oas TG
    Biochemistry; 1998 Apr; 37(16):5337-43. PubMed ID: 9548914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in the fast folding rates of the lambda-repressor: a hybrid molecular dynamics study.
    Pogorelov TV; Luthey-Schulten Z
    Biophys J; 2004 Jul; 87(1):207-14. PubMed ID: 15240458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topology-based models and NMR structures in protein folding simulations.
    Rey-Stolle MF; Enciso M; Rey A
    J Comput Chem; 2009 Jun; 30(8):1212-9. PubMed ID: 18988253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal combination of theory and experiment for the characterization of the protein folding landscape of S6: how far can a minimalist model go?
    Matysiak S; Clementi C
    J Mol Biol; 2004 Oct; 343(1):235-48. PubMed ID: 15381433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple physical models connect theory and experiment in protein folding kinetics.
    Alm E; Morozov AV; Kortemme T; Baker D
    J Mol Biol; 2002 Sep; 322(2):463-76. PubMed ID: 12217703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The whole lactose repressor.
    Matthews KS
    Science; 1996 Mar; 271(5253):1245-6. PubMed ID: 8638104
    [No Abstract]   [Full Text] [Related]  

  • 13. Rough energy landscapes in protein folding: dimeric E. coli Trp repressor folds through three parallel channels.
    Gloss LM; Simler BR; Matthews CR
    J Mol Biol; 2001 Oct; 312(5):1121-34. PubMed ID: 11580254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of urea and glycine betaine to quantify coupled folding and probe the burial of DNA phosphates in lac repressor-lac operator binding.
    Hong J; Capp MW; Saecker RM; Record MT
    Biochemistry; 2005 Dec; 44(51):16896-911. PubMed ID: 16363803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactose repressor experimental folding landscape: fundamental functional unit and tetramer folding mechanisms.
    Ramot R; Kishore Inampudi K; Wilson CJ
    Biochemistry; 2012 Sep; 51(38):7569-79. PubMed ID: 22931511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer.
    Lewis M; Chang G; Horton NC; Kercher MA; Pace HC; Schumacher MA; Brennan RG; Lu P
    Science; 1996 Mar; 271(5253):1247-54. PubMed ID: 8638105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of sequence specificity for predicting protein folding pathways: perturbed Gaussian chain model.
    Kameda T
    Proteins; 2003 Nov; 53(3):616-28. PubMed ID: 14579353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing simplified proteins models of the hPin1 WW domain.
    Cecconi F; Guardiani C; Livi R
    Biophys J; 2006 Jul; 91(2):694-704. PubMed ID: 16648162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interplay among tertiary contacts, secondary structure formation and side-chain packing in the protein folding mechanism: all-atom representation study of protein L.
    Clementi C; García AE; Onuchic JN
    J Mol Biol; 2003 Feb; 326(3):933-54. PubMed ID: 12581651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.