These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 16204213)
1. Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Casasoli M; Derory J; Morera-Dutrey C; Brendel O; Porth I; Guehl JM; Villani F; Kremer A Genetics; 2006 Jan; 172(1):533-46. PubMed ID: 16204213 [TBL] [Abstract][Full Text] [Related]
2. Comparative mapping in the Fagaceae and beyond with EST-SSRs. Bodénès C; Chancerel E; Gailing O; Vendramin GG; Bagnoli F; Durand J; Goicoechea PG; Soliani C; Villani F; Mattioni C; Koelewijn HP; Murat F; Salse J; Roussel G; Boury C; Alberto F; Kremer A; Plomion C BMC Plant Biol; 2012 Aug; 12():153. PubMed ID: 22931513 [TBL] [Abstract][Full Text] [Related]
3. A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. Durand J; Bodénès C; Chancerel E; Frigerio JM; Vendramin G; Sebastiani F; Buonamici A; Gailing O; Koelewijn HP; Villani F; Mattioni C; Cherubini M; Goicoechea PG; Herrán A; Ikaran Z; Cabané C; Ueno S; Alberto F; Dumoulin PY; Guichoux E; de Daruvar A; Kremer A; Plomion C BMC Genomics; 2010 Oct; 11():570. PubMed ID: 20950475 [TBL] [Abstract][Full Text] [Related]
4. Comparative mapping between quercus and castanea using simple-sequence repeats (SSRs). Barreneche T; Casasoli M; Russell K; Akkak A; Meddour H; Plomion C; Villani F; Kremer A Theor Appl Genet; 2004 Feb; 108(3):558-66. PubMed ID: 14564395 [TBL] [Abstract][Full Text] [Related]
5. Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Scotti-Saintagne C; Bodénès C; Barreneche T; Bertocchi E; Plomion C; Kremer A Theor Appl Genet; 2004 Nov; 109(8):1648-59. PubMed ID: 15490107 [TBL] [Abstract][Full Text] [Related]
6. EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). Studer B; Kölliker R; Muylle H; Asp T; Frei U; Roldán-Ruiz I; Barre P; Tomaszewski C; Meally H; Barth S; Skøt L; Armstead IP; Dolstra O; Lübberstedt T BMC Plant Biol; 2010 Aug; 10():177. PubMed ID: 20712870 [TBL] [Abstract][Full Text] [Related]
7. Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. Ueno S; Le Provost G; Léger V; Klopp C; Noirot C; Frigerio JM; Salin F; Salse J; Abrouk M; Murat F; Brendel O; Derory J; Abadie P; Léger P; Cabane C; Barré A; de Daruvar A; Couloux A; Wincker P; Reviron MP; Kremer A; Plomion C BMC Genomics; 2010 Nov; 11():650. PubMed ID: 21092232 [TBL] [Abstract][Full Text] [Related]
8. First interspecific genetic linkage map for Castanea sativa x Castanea crenata revealed QTLs for resistance to Phytophthora cinnamomi. Santos C; Nelson CD; Zhebentyayeva T; Machado H; Gomes-Laranjo J; Costa RL PLoS One; 2017; 12(9):e0184381. PubMed ID: 28880954 [TBL] [Abstract][Full Text] [Related]
9. Results on quantitative trait loci for flushing date in oaks can be transferred to different segregating progenies. Gailing O; Kremer A; Steiner W; Hattemer HH; Finkeldey R Plant Biol (Stuttg); 2005 Sep; 7(5):516-25. PubMed ID: 16163617 [TBL] [Abstract][Full Text] [Related]
10. An Expressed Sequence Tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts. Bouza C; Hermida M; Pardo BG; Vera M; Fernández C; de la Herrán R; Navajas-Pérez R; Álvarez-Dios JA; Gómez-Tato A; Martínez P BMC Genet; 2012 Jul; 13():54. PubMed ID: 22747677 [TBL] [Abstract][Full Text] [Related]
11. Distribution of genomic regions differentiating oak species assessed by QTL detection. Saintagne C; Bodénès C; Barreneche T; Pot D; Plomion C; Kremer A Heredity (Edinb); 2004 Jan; 92(1):20-30. PubMed ID: 14508500 [TBL] [Abstract][Full Text] [Related]
12. Detection and validation of EST-SSR markers associated with sugar-related traits in sugarcane using linkage and association mapping. Ukoskit K; Posudsavang G; Pongsiripat N; Chatwachirawong P; Klomsa-Ard P; Poomipant P; Tragoonrung S Genomics; 2019 Jan; 111(1):1-9. PubMed ID: 29608956 [TBL] [Abstract][Full Text] [Related]
13. QTL mapping of ten agronomic traits on the soybean ( Glycine max L. Merr.) genetic map and their association with EST markers. Zhang WK; Wang YJ; Luo GZ; Zhang JS; He CY; Wu XL; Gai JY; Chen SY Theor Appl Genet; 2004 Apr; 108(6):1131-9. PubMed ID: 15067400 [TBL] [Abstract][Full Text] [Related]
14. Construction of genetic linkage map with chromosomal assigment and quantitative trait loci associated with some important agronomic traits in cotton. Adawy SS; Diab AA; Atia MA; Hussein EH GM Crops Food; 2013; 4(1):36-49. PubMed ID: 23333856 [TBL] [Abstract][Full Text] [Related]
15. Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. Rajaram V; Nepolean T; Senthilvel S; Varshney RK; Vadez V; Srivastava RK; Shah TM; Supriya A; Kumar S; Ramana Kumari B; Bhanuprakash A; Narasu ML; Riera-Lizarazu O; Hash CT BMC Genomics; 2013 Mar; 14():159. PubMed ID: 23497368 [TBL] [Abstract][Full Text] [Related]
16. Bayesian QTL mapping using genome-wide SSR markers and segregating population derived from a cross of two commercial F Ohyama A; Shirasawa K; Matsunaga H; Negoro S; Miyatake K; Yamaguchi H; Nunome T; Iwata H; Fukuoka H; Hayashi T Theor Appl Genet; 2017 Aug; 130(8):1601-1616. PubMed ID: 28477044 [TBL] [Abstract][Full Text] [Related]