BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 16204524)

  • 1. Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans.
    Clavel T; Henderson G; Alpert CA; Philippe C; Rigottier-Gois L; Doré J; Blaut M
    Appl Environ Microbiol; 2005 Oct; 71(10):6077-85. PubMed ID: 16204524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside.
    Clavel T; Henderson G; Engst W; Doré J; Blaut M
    FEMS Microbiol Ecol; 2006 Mar; 55(3):471-8. PubMed ID: 16466386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human intestinal bacteria capable of transforming secoisolariciresinol diglucoside to mammalian lignans, enterodiol and enterolactone.
    Wang LQ; Meselhy MR; Li Y; Qin GW; Hattori M
    Chem Pharm Bull (Tokyo); 2000 Nov; 48(11):1606-10. PubMed ID: 11086885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial transformation of dietary lignans in gnotobiotic rats.
    Woting A; Clavel T; Loh G; Blaut M
    FEMS Microbiol Ecol; 2010 Jun; 72(3):507-14. PubMed ID: 20370826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of bifidobacteria in the activation of the lignan secoisolariciresinol diglucoside.
    Roncaglia L; Amaretti A; Raimondi S; Leonardi A; Rossi M
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):159-68. PubMed ID: 21614502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective dehydroxylation of enterodiol and enterolactone precursors by human intestinal bacteria.
    Jin JS; Zhao YF; Nakamura N; Akao T; Kakiuchi N; Min BS; Hattori M
    Biol Pharm Bull; 2007 Nov; 30(11):2113-9. PubMed ID: 17978485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative pharmacokinetics of purified flaxseed and associated mammalian lignans in male Wistar rats.
    Mukker JK; Singh RS; Muir AD; Krol ES; Alcorn J
    Br J Nutr; 2015 Mar; 113(5):749-57. PubMed ID: 25716060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccessibility of lignans from flaxseed (Linum usitatissimum L.) determined by single-batch in vitro simulation of the digestive process.
    Fuentealba C; Figuerola F; Estévez AM; Bastías JM; Muñoz O
    J Sci Food Agric; 2014 Jul; 94(9):1729-38. PubMed ID: 24243589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside.
    Clavel T; Lippman R; Gavini F; Doré J; Blaut M
    Syst Appl Microbiol; 2007 Jan; 30(1):16-26. PubMed ID: 17196483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human intestinal bacterium, strain END-2 is responsible for demethylation as well as lactonization during plant lignan metabolism.
    Jin JS; Hattori M
    Biol Pharm Bull; 2010; 33(8):1443-7. PubMed ID: 20686246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial conversion of secoisolariciresinol and anhydrosecoisolariciresinol.
    Struijs K; Vincken JP; Gruppen H
    J Appl Microbiol; 2009 Jul; 107(1):308-17. PubMed ID: 19302311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of different lignan compounds on enterolignan production by Bifidobacterium and Lactobacillus strains.
    Peirotén Á; Gaya P; Álvarez I; Bravo D; Landete JM
    Int J Food Microbiol; 2019 Jan; 289():17-23. PubMed ID: 30193121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant activities of the flaxseed lignan secoisolariciresinol diglucoside, its aglycone secoisolariciresinol and the mammalian lignans enterodiol and enterolactone in vitro.
    Hu C; Yuan YV; Kitts DD
    Food Chem Toxicol; 2007 Nov; 45(11):2219-27. PubMed ID: 17624649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans.
    Clavel T; Borrmann D; Braune A; Doré J; Blaut M
    Anaerobe; 2006 Jun; 12(3):140-7. PubMed ID: 16765860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of secoisolariciresinol-diglycoside the dietary precursor to the intestinally derived lignan enterolactone in humans.
    Setchell KD; Brown NM; Zimmer-Nechemias L; Wolfe B; Jha P; Heubi JE
    Food Funct; 2014 Mar; 5(3):491-501. PubMed ID: 24429845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incomplete metabolism of phytoestrogens by gut microbiota from children under the age of three.
    Gaya P; Sánchez-Jiménez A; Peirotén Á; Medina M; Landete JM
    Int J Food Sci Nutr; 2018 May; 69(3):334-343. PubMed ID: 28728453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production and metabolism of lignans by the human faecal flora.
    Borriello SP; Setchell KD; Axelson M; Lawson AM
    J Appl Bacteriol; 1985 Jan; 58(1):37-43. PubMed ID: 2984153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical note: Quantification of lignans in the urine, milk, and plasma of flaxseed cake-fed dairy sheep.
    Zhuang CC; Feng X; Xu HY; Zhang L; Liu L; Zhang G; Zheng Z; Ma CM
    J Dairy Sci; 2021 Jan; 104(1):391-396. PubMed ID: 33189295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ERalpha transcriptional activation in human breast cancer cells.
    Carreau C; Flouriot G; Bennetau-Pelissero C; Potier M
    J Steroid Biochem Mol Biol; 2008 May; 110(1-2):176-85. PubMed ID: 18457947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of the lignan macromolecule into enterolignans in the gastrointestinal lumen as determined in the simulator of the human intestinal microbial ecosystem.
    Eeckhaut E; Struijs K; Possemiers S; Vincken JP; Keukeleire DD; Verstraete W
    J Agric Food Chem; 2008 Jun; 56(12):4806-12. PubMed ID: 18494490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.