BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16204824)

  • 41. Transcription: a mechanism for short-term memory.
    Ptashne M
    Curr Biol; 2008 Jan; 18(1):R25-7. PubMed ID: 18177708
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA damage-induced gene expression in Saccharomyces cerevisiae.
    Fu Y; Pastushok L; Xiao W
    FEMS Microbiol Rev; 2008 Nov; 32(6):908-26. PubMed ID: 18616603
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Post-transcriptional regulation of gene expression in response to iron deficiency: co-ordinated metabolic reprogramming by yeast mRNA-binding proteins.
    Vergara SV; Thiele DJ
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1088-90. PubMed ID: 18793194
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bimodal expression of yeast GAL genes is controlled by a long non-coding RNA and a bifunctional galactokinase.
    Zacharioudakis I; Tzamarias D
    Biochem Biophys Res Commun; 2017 Apr; 486(1):63-69. PubMed ID: 28254434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A yeast strain biosensor to detect cell wall-perturbing agents.
    Rodriguez-Peña JM; Diez-Muñiz S; Nombela C; Arroyo J
    J Biotechnol; 2008 Feb; 133(3):311-7. PubMed ID: 18055054
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel GAL recombinant yeast strain for enhanced protein production.
    Stagoj MN; Comino A; Komel R
    Biomol Eng; 2006 Sep; 23(4):195-9. PubMed ID: 16707274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Programmable ligand-controlled riboregulators of eukaryotic gene expression.
    Bayer TS; Smolke CD
    Nat Biotechnol; 2005 Mar; 23(3):337-43. PubMed ID: 15723047
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distribution and regulation of stochasticity and plasticity in Saccharomyces cerevisiae.
    Dar RD; Karig DK; Cooke JF; Cox CD; Simpson ML
    Chaos; 2010 Sep; 20(3):037106. PubMed ID: 20887072
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Galactose metabolic genes in yeast respond to a ratio of galactose and glucose.
    Escalante-Chong R; Savir Y; Carroll SM; Ingraham JB; Wang J; Marx CJ; Springer M
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1636-41. PubMed ID: 25605920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the relationship between genomic regulatory element organization and gene regulatory dynamics.
    Wolf DM; Eeckman FH
    J Theor Biol; 1998 Nov; 195(2):167-86. PubMed ID: 9822562
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metabolic gene regulation in a dynamically changing environment.
    Bennett MR; Pang WL; Ostroff NA; Baumgartner BL; Nayak S; Tsimring LS; Hasty J
    Nature; 2008 Aug; 454(7208):1119-22. PubMed ID: 18668041
    [TBL] [Abstract][Full Text] [Related]  

  • 52. There is a steady-state transcriptome in exponentially growing yeast cells.
    Pelechano V; Pérez-Ortín JE
    Yeast; 2010 Jul; 27(7):413-22. PubMed ID: 20301094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-wide transcriptional plasticity underlies cellular adaptation to novel challenge.
    Stern S; Dror T; Stolovicki E; Brenner N; Braun E
    Mol Syst Biol; 2007; 3():106. PubMed ID: 17453047
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [A thermostable Clostridium thermocellum lichenase-based reporter system for studying the gene expression regulation in prokaryotic and eukaryotic cells].
    Goldenkova IV; Musiĭchuk KA; Piruzian ES
    Mol Biol (Mosk); 2002; 36(5):868-76. PubMed ID: 12391851
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast.
    Ramsey SA; Smith JJ; Orrell D; Marelli M; Petersen TW; de Atauri P; Bolouri H; Aitchison JD
    Nat Genet; 2006 Sep; 38(9):1082-7. PubMed ID: 16936734
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Untangling the web of functional and physical interactions in yeast.
    Herrgård MJ; Palsson BØ
    J Biol; 2005; 4(2):5. PubMed ID: 15982410
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A steady-state modeling approach to validate an in vivo mechanism of the GAL regulatory network in Saccharomyces cerevisiae.
    Verma M; Bhat PJ; Bhartiya S; Venkatesh KV
    Eur J Biochem; 2004 Oct; 271(20):4064-74. PubMed ID: 15479235
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Regulatory circuits for gene expression: the metabolism of galactose and phosphate in Saccharomyces cerevisiae].
    Oshima Y; Tohe A; Matsumoto K
    Tanpakushitsu Kakusan Koso; 1984 Jan; 29(1):14-28. PubMed ID: 6369399
    [No Abstract]   [Full Text] [Related]  

  • 59. An improved short-lived fluorescent protein transcriptional reporter for Saccharomyces cerevisiae.
    Houser JR; Ford E; Chatterjea SM; Maleri S; Elston TC; Errede B
    Yeast; 2012 Dec; 29(12):519-30. PubMed ID: 23172645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Short- and long-term dynamic responses of the metabolic network and gene expression in yeast to a transient change in the nutrient environment.
    Dikicioglu D; Dunn WB; Kell DB; Kirdar B; Oliver SG
    Mol Biosyst; 2012 Jun; 8(6):1760-74. PubMed ID: 22491778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.