BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16204824)

  • 61. Glucose repression may involve processes with different sugar kinase requirements.
    Sanz P; Nieto A; Prieto JA
    J Bacteriol; 1996 Aug; 178(15):4721-3. PubMed ID: 8755906
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structural bistability of the GAL regulatory network and characterization of its domains of attraction.
    Cosentino C; Salerno L; Passanti A; Merola A; Bates DG; Amato F
    J Comput Biol; 2012 Feb; 19(2):148-62. PubMed ID: 22300317
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Computational analysis of the oscillatory behavior at the translation level induced by mRNA levels oscillations due to finite intracellular resources.
    Zarai Y; Tuller T
    PLoS Comput Biol; 2018 Apr; 14(4):e1006055. PubMed ID: 29614119
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms.
    García-Martínez J; Aranda A; Pérez-Ortín JE
    Mol Cell; 2004 Jul; 15(2):303-13. PubMed ID: 15260981
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Yeast model of an eucaryotic organism in molecular biology].
    Rytka J; Palamarczyk G
    Postepy Biochem; 1993; 39(3):152-5. PubMed ID: 8234087
    [No Abstract]   [Full Text] [Related]  

  • 66. Transcriptional rewiring over evolutionary timescales changes quantitative and qualitative properties of gene expression.
    Dalal CK; Zuleta IA; Mitchell KF; Andes DR; El-Samad H; Johnson AD
    Elife; 2016 Sep; 5():. PubMed ID: 27614020
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.
    Ideker T; Thorsson V; Ranish JA; Christmas R; Buhler J; Eng JK; Bumgarner R; Goodlett DR; Aebersold R; Hood L
    Science; 2001 May; 292(5518):929-34. PubMed ID: 11340206
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae.
    Lai LC; Kosorukoff AL; Burke PV; Kwast KE
    Eukaryot Cell; 2006 Sep; 5(9):1468-89. PubMed ID: 16963631
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Natural variation in preparation for nutrient depletion reveals a cost-benefit tradeoff.
    Wang J; Atolia E; Hua B; Savir Y; Escalante-Chong R; Springer M
    PLoS Biol; 2015 Jan; 13(1):e1002041. PubMed ID: 25626068
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.
    Katzir Y; Stolovicki E; Stern S; Braun E
    PLoS One; 2012; 7(9):e45184. PubMed ID: 23028834
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Stochastic variation in the concentration of a repressor activates GAL genetic switch: implications in evolution of regulatory network.
    Bhat PJ; Venkatesh KV
    FEBS Lett; 2005 Jan; 579(3):597-603. PubMed ID: 15670814
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Validation of a model of the GAL regulatory system via robustness analysis of its bistability characteristics.
    Salerno L; Cosentino C; Merola A; Bates DG; Amato F
    BMC Syst Biol; 2013 May; 7():39. PubMed ID: 23680044
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mitochondrial-nuclear DNA interactions contribute to the regulation of nuclear transcript levels as part of the inter-organelle communication system.
    Rodley CD; Grand RS; Gehlen LR; Greyling G; Jones MB; O'Sullivan JM
    PLoS One; 2012; 7(1):e30943. PubMed ID: 22292080
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Intrinsic noise, gene regulation and steady-state statistics in a two-gene network.
    Tao Y
    J Theor Biol; 2004 Dec; 231(4):563-8. PubMed ID: 15488533
    [TBL] [Abstract][Full Text] [Related]  

  • 75. On the relationship between fractal geometry of space and time in which a system of interacting cells exists and dynamics of gene expression.
    Waliszewski P; Molski M; Konarski J
    Acta Biochim Pol; 2001; 48(1):209-20. PubMed ID: 11440171
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Timing and Variability of Galactose Metabolic Gene Activation Depend on the Rate of Environmental Change.
    Nguyen-Huu TD; Gupta C; Ma B; Ott W; Josić K; Bennett MR
    PLoS Comput Biol; 2015 Jul; 11(7):e1004399. PubMed ID: 26200924
    [TBL] [Abstract][Full Text] [Related]  

  • 77. External control of the GAL network in S. cerevisiae: a view from control theory.
    Yang R; Lenaghan SC; Wikswo JP; Zhang M
    PLoS One; 2011 Apr; 6(4):e19353. PubMed ID: 21559408
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mathematical model of galactose regulation and metabolic consumption in yeast.
    Mitre TM; Mackey MC; Khadra A
    J Theor Biol; 2016 Oct; 407():238-258. PubMed ID: 27395401
    [TBL] [Abstract][Full Text] [Related]  

  • 79. How to make a biological switch.
    Cherry JL; Adler FR
    J Theor Biol; 2000 Mar; 203(2):117-33. PubMed ID: 10704297
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Single yeast cells vary in transcription activity not in delay time after a metabolic shift.
    Schwabe A; Bruggeman FJ
    Nat Commun; 2014 Sep; 5():4798. PubMed ID: 25178355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.