These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 16204826)
1. Side chain interactions determine the amyloid organization: a single layer beta-sheet molecular structure of the calcitonin peptide segment 15-19. Zanuy D; Haspel N; Tsai HH; Ma B; Gunasekaran K; Wolfson HJ; Nussinov R Phys Biol; 2004 Jun; 1(1-2):89-99. PubMed ID: 16204826 [TBL] [Abstract][Full Text] [Related]
2. A comparative study of amyloid fibril formation by residues 15-19 of the human calcitonin hormone: a single beta-sheet model with a small hydrophobic core. Haspel N; Zanuy D; Ma B; Wolfson H; Nussinov R J Mol Biol; 2005 Feb; 345(5):1213-27. PubMed ID: 15644216 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulations of a beta-hairpin fragment of protein G: balance between side-chain and backbone forces. Ma B; Nussinov R J Mol Biol; 2000 Mar; 296(4):1091-104. PubMed ID: 10686106 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulations and free energy analyses on the dimer formation of an amyloidogenic heptapeptide from human beta2-microglobulin: implication for the protofibril structure. Lei H; Wu C; Wang Z; Duan Y J Mol Biol; 2006 Mar; 356(4):1049-63. PubMed ID: 16403526 [TBL] [Abstract][Full Text] [Related]
5. A cylinder-shaped double ribbon structure formed by an amyloid hairpin peptide derived from the beta-sheet of murine PrP: an X-ray and molecular dynamics simulation study. Croixmarie V; Briki F; David G; Coïc YM; Ovtracht L; Doucet J; Jamin N; Sanson A J Struct Biol; 2005 Jun; 150(3):284-99. PubMed ID: 15890277 [TBL] [Abstract][Full Text] [Related]
6. Sequence dependence of amyloid fibril formation: insights from molecular dynamics simulations. López de la Paz M; de Mori GM; Serrano L; Colombo G J Mol Biol; 2005 Jun; 349(3):583-96. PubMed ID: 15882870 [TBL] [Abstract][Full Text] [Related]
7. Beta-hairpin folding by a model amyloid peptide in solution and at an interface. Knecht V J Phys Chem B; 2008 Aug; 112(31):9476-83. PubMed ID: 18593146 [TBL] [Abstract][Full Text] [Related]
8. Dynamics and stability of amyloid-like steric zipper assemblies with hydrophobic dry interfaces. Vitagliano L; Stanzione F; De Simone A; Esposito L Biopolymers; 2009 Dec; 91(12):1161-71. PubMed ID: 19280623 [TBL] [Abstract][Full Text] [Related]
9. Higher-order molecular packing in amyloid-like fibrils constructed with linear arrangements of hydrophobic and hydrogen-bonding side-chains. Saiki M; Honda S; Kawasaki K; Zhou D; Kaito A; Konakahara T; Morii H J Mol Biol; 2005 May; 348(4):983-98. PubMed ID: 15843028 [TBL] [Abstract][Full Text] [Related]
10. The intact human acetylcholinesterase C-terminal oligomerization domain is alpha-helical in situ and in isolation, but a shorter fragment forms beta-sheet-rich amyloid fibrils and protofibrillar oligomers. Cottingham MG; Voskuil JL; Vaux DJ Biochemistry; 2003 Sep; 42(36):10863-73. PubMed ID: 12962511 [TBL] [Abstract][Full Text] [Related]
11. Spatial separation of beta-sheet domains of beta-amyloid: disruption of each beta-sheet by N-methyl amino acids. Sciarretta KL; Boire A; Gordon DJ; Meredith SC Biochemistry; 2006 Aug; 45(31):9485-95. PubMed ID: 16878983 [TBL] [Abstract][Full Text] [Related]
12. Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer. Berhanu WM; Masunov AE Biophys Chem; 2010 Jun; 149(1-2):12-21. PubMed ID: 20456856 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics study of amyloid formation of two Abl-SH3 domain peptides. Liepina I; Ventura S; Czaplewski C; Liwo A J Pept Sci; 2006 Dec; 12(12):780-9. PubMed ID: 17131290 [TBL] [Abstract][Full Text] [Related]
14. Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing. Lipfert J; Franklin J; Wu F; Doniach S J Mol Biol; 2005 Jun; 349(3):648-58. PubMed ID: 15896350 [TBL] [Abstract][Full Text] [Related]
15. Assembly dynamics of two-beta sheets revealed by molecular dynamics simulations. Xu W; Ping J; Li W; Mu Y J Chem Phys; 2009 Apr; 130(16):164709. PubMed ID: 19405618 [TBL] [Abstract][Full Text] [Related]
17. What factor drives the fibrillogenic association of beta-sheets? Fernández A FEBS Lett; 2005 Dec; 579(29):6635-40. PubMed ID: 16293252 [TBL] [Abstract][Full Text] [Related]
18. Structural stability and aggregation behavior of the VEALYL peptide derived from human insulin: a molecular dynamics simulation study. Lin YF; Zhao JH; Liu HL; Liu KT; Chen JT; Tsai WB; Ho Y Biopolymers; 2010; 94(3):269-78. PubMed ID: 19810108 [TBL] [Abstract][Full Text] [Related]
19. Structural polymorphism of human islet amyloid polypeptide (hIAPP) oligomers highlights the importance of interfacial residue interactions. Zhao J; Yu X; Liang G; Zheng J Biomacromolecules; 2011 Jan; 12(1):210-20. PubMed ID: 21158384 [TBL] [Abstract][Full Text] [Related]
20. Two-rung model of a left-handed beta-helix for prions explains species barrier and strain variation in transmissible spongiform encephalopathies. Langedijk JP; Fuentes G; Boshuizen R; Bonvin AM J Mol Biol; 2006 Jul; 360(4):907-20. PubMed ID: 16782127 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]