BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 16204943)

  • 1. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect.
    Bae EA; Shin JE; Kim DH
    Biol Pharm Bull; 2005 Oct; 28(10):1903-8. PubMed ID: 16204943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibiotics attenuate anti-scratching behavioral effect of ginsenoside Re in mice.
    Jang SE; Jung IH; Joh EH; Han MJ; Kim DH
    J Ethnopharmacol; 2012 Jun; 142(1):105-112. PubMed ID: 22855946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-inflammatory effects of ginsenoside Rg1 and its metabolites ginsenoside Rh1 and 20(S)-protopanaxatriol in mice with TNBS-induced colitis.
    Lee SY; Jeong JJ; Eun SH; Kim DH
    Eur J Pharmacol; 2015 Sep; 762():333-43. PubMed ID: 26054809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic preparation of ginsenosides Rg2, Rh1, and F1.
    Ko SR; Choi KJ; Suzuki K; Suzuki Y
    Chem Pharm Bull (Tokyo); 2003 Apr; 51(4):404-8. PubMed ID: 12672992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of ginsenosides Rg1 and Rh1 by hydrolyzing the outer glycoside at the C-6 position in protopanaxatriol-type ginsenosides using β-glucosidase from Pyrococcus furiosus.
    Oh HJ; Shin KC; Oh DK
    Biotechnol Lett; 2014 Jan; 36(1):113-9. PubMed ID: 24078126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of ginsenoside Rb1 by human intestinal microflora and cloning of its metabolizing β-D-glucosidase from Bifidobacterium longum H-1.
    Jung IH; Lee JH; Hyun YJ; Kim DH
    Biol Pharm Bull; 2012; 35(4):573-81. PubMed ID: 22466563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity of β-glucosidase from Gordonia terrae for ginsenosides and its application in the production of ginsenosides Rg₃, Rg₂, and Rh₁ from ginseng root extract.
    Shin KC; Lee HJ; Oh DK
    J Biosci Bioeng; 2015 May; 119(5):497-504. PubMed ID: 25457989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants.
    Bae EA; Han MJ; Kim EJ; Kim DH
    Arch Pharm Res; 2004 Jan; 27(1):61-7. PubMed ID: 14969341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic preparation of genuine prosapogenin, 20(S)-ginsenoside Rh1, from ginsenosides Re and Rg1.
    Ko SR; Suzuki Y; Choi KJ; Kim YH
    Biosci Biotechnol Biochem; 2000 Dec; 64(12):2739-43. PubMed ID: 11210151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic transformation of ginseng leaf saponin by recombinant β-glucosidase (bgp1) and its efficacy in an adipocyte cell line.
    Huq MA; Siraj FM; Kim YJ; Yang DC
    Biotechnol Appl Biochem; 2016 Jul; 63(4):532-8. PubMed ID: 26011629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research on the transformation of ginsenoside Rg1 by intestinal flora].
    Wang Y; Liu TH; Wang W; Wang BX
    Zhongguo Zhong Yao Za Zhi; 2001 Mar; 26(3):188-90. PubMed ID: 12525040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rh1 by recombinant β-glucosidase.
    Quan LH; Min JW; Sathiyamoorthy S; Yang DU; Kim YJ; Yang DC
    Biotechnol Lett; 2012 May; 34(5):913-7. PubMed ID: 22261865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of
    Dong WW; Zhao J; Zhong FL; Zhu WJ; Jiang J; Wu S; Yang DC; Li D; Quan LH
    J Ginseng Res; 2017 Oct; 41(4):540-547. PubMed ID: 29021702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Panax ginseng UDP-Glycosyltransferases Catalyzing Protopanaxatriol and Biosyntheses of Bioactive Ginsenosides F1 and Rh1 in Metabolically Engineered Yeasts.
    Wei W; Wang P; Wei Y; Liu Q; Yang C; Zhao G; Yue J; Yan X; Zhou Z
    Mol Plant; 2015 Sep; 8(9):1412-24. PubMed ID: 26032089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity.
    Bae EA; Choo MK; Park EK; Park SY; Shin HY; Kim DH
    Biol Pharm Bull; 2002 Jun; 25(6):743-7. PubMed ID: 12081140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Metabolism of six saponins by rat intestinal bacteria in vitro].
    Gao X; Geng T; Ma Y; Li YJ; Huang WZ; Wang ZZ; Xiao W
    Zhongguo Zhong Yao Za Zhi; 2016 Jun; 41(12):2329-2338. PubMed ID: 28901081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities.
    Bae EA; Han MJ; Choo MK; Park SY; Kim DH
    Biol Pharm Bull; 2002 Jan; 25(1):58-63. PubMed ID: 11824558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria.
    Bae EA; Park SY; Kim DH
    Biol Pharm Bull; 2000 Dec; 23(12):1481-5. PubMed ID: 11145182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic Formation of Novel Ginsenoside Rg1-α-Glucosides by Rat Intestinal Homogenates.
    Mathiyalagan R; Kim YH; Kim YJ; Kim MK; Kim MJ; Yang DC
    Appl Biochem Biotechnol; 2015 Dec; 177(8):1701-15. PubMed ID: 26411353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolite profiling of ginsenoside Re in rat urine and faeces after oral administration.
    Kim U; Park MH; Kim DH; Yoo HH
    Food Chem; 2013 Feb; 136(3-4):1364-9. PubMed ID: 23194536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.