BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 16205950)

  • 21. Land-use changes alter CO2 flux patterns of a tall-grass Andropogon field and a savanna-woodland continuum in the Orinoco lowlands.
    San José J; Montes R; Grace J; Nikonova N
    Tree Physiol; 2008 Mar; 28(3):437-50. PubMed ID: 18171667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term enhanced winter soil frost alters growing season CO
    Zhao J; Peichl M; Nilsson MB
    Glob Chang Biol; 2017 Aug; 23(8):3139-3153. PubMed ID: 28075520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term grazing effects on vegetation characteristics and soil properties in a semiarid grassland, northern China.
    Zhang J; Zuo X; Zhou X; Lv P; Lian J; Yue X
    Environ Monit Assess; 2017 May; 189(5):216. PubMed ID: 28411318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2.
    Hu S; Chapin FS; Firestone MK; Field CB; Chiariello NR
    Nature; 2001 Jan; 409(6817):188-91. PubMed ID: 11196641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wetting and drying cycles drive variations in the stable carbon isotope ratio of respired carbon dioxide in semi-arid grassland.
    Shim JH; Pendall E; Morgan JA; Ojima DS
    Oecologia; 2009 May; 160(2):321-33. PubMed ID: 19259704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests.
    Besnard S; Carvalhais N; Arain MA; Black A; Brede B; Buchmann N; Chen J; Clevers JGPW; Dutrieux LP; Gans F; Herold M; Jung M; Kosugi Y; Knohl A; Law BE; Paul-Limoges E; Lohila A; Merbold L; Roupsard O; Valentini R; Wolf S; Zhang X; Reichstein M
    PLoS One; 2019; 14(2):e0211510. PubMed ID: 30726269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Responses of grassland ecosystem carbon fluxes to precipitation and their environmental factors in the Badain Jaran Desert.
    Yang P; Wang N; Zhao L; Su B; Niu Z; Zhao H
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):75805-75821. PubMed ID: 35655020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon dioxide fluxes over a grazed prairie and seeded pasture in the Northern Great Plains.
    Frank AB
    Environ Pollut; 2002; 116(3):397-403. PubMed ID: 11822718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon fluxes from an urban tropical grassland.
    Ng BJL; Hutyra LR; Nguyen H; Cobb AR; Kai FM; Harvey C; Gandois L
    Environ Pollut; 2015 Aug; 203():227-234. PubMed ID: 24998996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduction in precipitation amount, precipitation events, and nitrogen addition change ecosystem carbon fluxes differently in a semi-arid grassland.
    Du L; Luo Y; Zhang J; Shen Y; Zhang J; Tian R; Shao W; Xu Z
    Sci Total Environ; 2024 Jun; 927():172276. PubMed ID: 38583634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide.
    Pendall E; Heisler-White JL; Williams DG; Dijkstra FA; Carrillo Y; Morgan JA; Lecain DR
    PLoS One; 2013; 8(8):e71921. PubMed ID: 23977180
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Density-dependent plant growth drives grazer stimulation of aboveground net primary production in Yellowstone grasslands.
    Penner JF; Frank DA
    Oecologia; 2021 Jul; 196(3):851-861. PubMed ID: 34117517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stable isotopes in ecosystem science: structure, function and dynamics of a subtropical Savanna.
    Boutton TW; Archer SR; Midwood AJ
    Rapid Commun Mass Spectrom; 1999; 13(13):1263-77. PubMed ID: 10407309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis.
    Zhou G; Zhou X; He Y; Shao J; Hu Z; Liu R; Zhou H; Hosseinibai S
    Glob Chang Biol; 2017 Mar; 23(3):1167-1179. PubMed ID: 27416555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes.
    Emmerton CA; St Louis VL; Humphreys ER; Gamon JA; Barker JD; Pastorello GZ
    Glob Chang Biol; 2016 Mar; 22(3):1185-200. PubMed ID: 26279166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecosystem carbon exchange in response to locust outbreaks in a temperate steppe.
    Song J; Wu D; Shao P; Hui D; Wan S
    Oecologia; 2015 Jun; 178(2):579-90. PubMed ID: 25663332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seasonal and Inter-Annual Variations in Carbon Dioxide Exchange over an Alpine Grassland in the Eastern Qinghai-Tibetan Plateau.
    Shang L; Zhang Y; Lyu S; Wang S
    PLoS One; 2016; 11(11):e0166837. PubMed ID: 27861616
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen limitation constrains sustainability of ecosystem response to CO2.
    Reich PB; Hobbie SE; Lee T; Ellsworth DS; West JB; Tilman D; Knops JM; Naeem S; Trost J
    Nature; 2006 Apr; 440(7086):922-5. PubMed ID: 16612381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geospatial variability of soil CO2-C exchange in the main terrestrial ecosystems of Keller Peninsula, Maritime Antarctica.
    Thomazini A; Francelino MR; Pereira AB; Schünemann AL; Mendonça ES; Almeida PHA; Schaefer CEGR
    Sci Total Environ; 2016 Aug; 562():802-811. PubMed ID: 27110991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of precipitation seasonal distribution on net ecosystem CO
    Zheng Y; Liu H; Du Q; Liu Y; Sun J; Cun H; Järvi L
    Int J Biometeorol; 2022 Aug; 66(8):1561-1573. PubMed ID: 35522348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.