BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16205958)

  • 1. Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks.
    Caballero J; Fernández M
    J Mol Model; 2006 Jan; 12(2):168-81. PubMed ID: 16205958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSARs of some novel isosteric heterocyclics with antifungal activity.
    Yalçin I; Oren I; Temiz O; Sener EA
    Acta Biochim Pol; 2000; 47(2):481-6. PubMed ID: 11051213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian-regularized genetic neural networks applied to the modeling of non-peptide antagonists for the human luteinizing hormone-releasing hormone receptor.
    Fernández M; Caballero J
    J Mol Graph Model; 2006 Dec; 25(4):410-22. PubMed ID: 16574448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear and nonlinear QSAR study of N-hydroxy-2-[(phenylsulfonyl)amino]acetamide derivatives as matrix metalloproteinase inhibitors.
    Fernández M; Caballero J; Tundidor-Camba A
    Bioorg Med Chem; 2006 Jun; 14(12):4137-50. PubMed ID: 16504515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial neural networks in prediction of antifungal activity of a series of pyridine derivatives against Candida albicans.
    Buciński A; Socha A; Wnuk M; Baczek T; Nowaczyk A; Krysiński J; Goryński K; Koba M
    J Microbiol Methods; 2009 Jan; 76(1):25-9. PubMed ID: 18824043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of GA-MLR for QSAR Modeling of the Arylthioindole Class of Tubulin Polymerization Inhibitors as Anticancer Agents.
    Ahmadi S; Habibpour E
    Anticancer Agents Med Chem; 2017; 17(4):552-565. PubMed ID: 27528182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic neural network modeling of the selective inhibition of the intermediate-conductance Ca2+ -activated K+ channel by some triarylmethanes using topological charge indexes descriptors.
    Caballero J; Garriga M; Fernández M
    J Comput Aided Mol Des; 2005 Nov; 19(11):771-89. PubMed ID: 16374673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Algorithm and Self-Organizing Maps for QSPR Study of Some N-aryl Derivatives as Butyrylcholinesterase Inhibitors.
    Ahmadi S; Ganji S
    Curr Drug Discov Technol; 2016; 13(4):232-253. PubMed ID: 27457492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of acetylcholinesterase inhibition by tacrine analogues using Bayesian-regularized Genetic Neural Networks and ensemble averaging.
    Fernández M; Carreiras MC; Marco JL; Caballero J
    J Enzyme Inhib Med Chem; 2006 Dec; 21(6):647-61. PubMed ID: 17252937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D Autocorrelation modeling of the negative inotropic activity of calcium entry blockers using Bayesian-regularized genetic neural networks.
    Caballero J; Garriga M; Fernández M
    Bioorg Med Chem; 2006 May; 14(10):3330-40. PubMed ID: 16442799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines.
    Fernández M; Caballero J
    Chem Biol Drug Des; 2006 Oct; 68(4):201-12. PubMed ID: 17105484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian regularization of neural networks.
    Burden F; Winkler D
    Methods Mol Biol; 2008; 458():25-44. PubMed ID: 19065804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the antileishmanial activity screening of 5-nitro-2-heterocyclic benzylidene hydrazides using different chemometrics methods.
    Garkani-Nejad Z; Ahmadi-Roudi B
    Eur J Med Chem; 2010 Feb; 45(2):719-26. PubMed ID: 19959260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. QSAR modeling of matrix metalloproteinase inhibition by N-hydroxy-alpha-phenylsulfonylacetamide derivatives.
    Fernández M; Caballero J
    Bioorg Med Chem; 2007 Sep; 15(18):6298-310. PubMed ID: 17590339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR analysis for heterocyclic antifungals.
    Duchowicz PR; Vitale MG; Castro EA; Fernández M; Caballero J
    Bioorg Med Chem; 2007 Apr; 15(7):2680-9. PubMed ID: 17296301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural networks from MATLAB in medicinal chemistry. Bayesian-regularized genetic neural networks (BRGNN): application to the prediction of the antagonistic activity against human platelet thrombin receptor (PAR-1).
    Caballero J; Fernández M
    Curr Top Med Chem; 2008; 8(18):1580-605. PubMed ID: 19075769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative structural-activity relationship (QSAR) study for fungicidal activities of thiazoline derivatives against rice blast.
    Song JS; Moon T; Nam KD; Lee JK; Hahn HG; Choi EJ; Yoon CN
    Bioorg Med Chem Lett; 2008 Mar; 18(6):2133-42. PubMed ID: 18299194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSAR models for predicting the activity of non-peptide luteinizing hormone-releasing hormone (LHRH) antagonists derived from erythromycin A using quantum chemical properties.
    Fernández M; Caballero J
    J Mol Model; 2007 Apr; 13(4):465-76. PubMed ID: 17216287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of QSAR models based on combinations of genetic algorithm, stepwise multiple linear regression, and artificial neural network methods to predict Kd of some derivatives of aromatic sulfonamides as carbonic anhydrase II inhibitors.
    Maleki A; Daraei H; Alaei L; Faraji A
    Bioorg Khim; 2014; 40(1):70-84. PubMed ID: 25898725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.