BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 16206169)

  • 21. The control of microtubule stability in vitro and in transfected cells by MAP1B and SCG10.
    Bondallaz P; Barbier A; Soehrman S; Grenningloh G; Riederer BM
    Cell Motil Cytoskeleton; 2006 Nov; 63(11):681-95. PubMed ID: 17009328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microtubule-associated protein 1B interaction with tubulin tyrosine ligase contributes to the control of microtubule tyrosination.
    Utreras E; Jiménez-Mateos EM; Contreras-Vallejos E; Tortosa E; Pérez M; Rojas S; Saragoni L; Maccioni RB; Avila J; González-Billault C
    Dev Neurosci; 2008; 30(1-3):200-10. PubMed ID: 18075266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of MAP1B heavy chain interaction with actin.
    Cueille N; Blanc CT; Popa-Nita S; Kasas S; Catsicas S; Dietler G; Riederer BM
    Brain Res Bull; 2007 Mar; 71(6):610-8. PubMed ID: 17292804
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins.
    Sun D; Leung CL; Liem RK
    J Cell Sci; 2001 Jan; 114(Pt 1):161-172. PubMed ID: 11112700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A targeted multienzyme mechanism for selective microtubule polyglutamylation.
    van Dijk J; Rogowski K; Miro J; Lacroix B; Eddé B; Janke C
    Mol Cell; 2007 May; 26(3):437-48. PubMed ID: 17499049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nickel (Ni2+) enhancement of alpha-tubulin acetylation in cultured 3T3 cells.
    Li W; Zhao Y; Chou IN
    Toxicol Appl Pharmacol; 1996 Oct; 140(2):461-70. PubMed ID: 8887464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and functional characterization of protein 4.1R and actin-binding sites in erythrocyte beta spectrin: regulation of the interactions by phosphatidylinositol-4,5-bisphosphate.
    An X; Debnath G; Guo X; Liu S; Lux SE; Baines A; Gratzer W; Mohandas N
    Biochemistry; 2005 Aug; 44(31):10681-8. PubMed ID: 16060676
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of a novel tubulin-destabilizing protein related to the chaperone cofactor E.
    Bartolini F; Tian G; Piehl M; Cassimeris L; Lewis SA; Cowan NJ
    J Cell Sci; 2005 Mar; 118(Pt 6):1197-207. PubMed ID: 15728251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of microtubule dynamics by the microtubule-associated protein 1a.
    Faller EM; Brown DL
    J Neurosci Res; 2009 Apr; 87(5):1080-9. PubMed ID: 18951470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microtubule-driven multimerization recruits ase1p onto overlapping microtubules.
    Kapitein LC; Janson ME; van den Wildenberg SM; Hoogenraad CC; Schmidt CF; Peterman EJ
    Curr Biol; 2008 Nov; 18(21):1713-7. PubMed ID: 18976915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microtubule detachment from the microtubule-organizing center as a key event in the complete turnover of microtubules in cells.
    McBeath E; Fujiwara K
    Eur J Cell Biol; 1990 Jun; 52(1):1-16. PubMed ID: 2387301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Key interaction modes of dynamic +TIP networks.
    Honnappa S; Okhrimenko O; Jaussi R; Jawhari H; Jelesarov I; Winkler FK; Steinmetz MO
    Mol Cell; 2006 Sep; 23(5):663-71. PubMed ID: 16949363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GEC1, a protein related to GABARAP, interacts with tubulin and GABA(A) receptor.
    Mansuy V; Boireau W; Fraichard A; Schlick JL; Jouvenot M; Delage-Mourroux R
    Biochem Biophys Res Commun; 2004 Dec; 325(2):639-48. PubMed ID: 15530441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The molecular basis of microtubule stability in neurons.
    Falconer MM; Vaillant A; Reuhl KR; Laferrière N; Brown DL
    Neurotoxicology; 1994; 15(1):109-22. PubMed ID: 8090350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visualization of the stop of microtubule depolymerization that occurs at the high-density region of microtubule-associated protein 2 (MAP2).
    Ichihara K; Kitazawa H; Iguchi Y; Hotani H; Itoh TJ
    J Mol Biol; 2001 Sep; 312(1):107-18. PubMed ID: 11545589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification and characterization of human VCY2-interacting protein: VCY2IP-1, a microtubule-associated protein-like protein.
    Wong EY; Tse JY; Yao KM; Lui VC; Tam PC; Yeung WS
    Biol Reprod; 2004 Mar; 70(3):775-84. PubMed ID: 14627543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin.
    Rachlin AS; Otey CA
    J Cell Sci; 2006 Mar; 119(Pt 6):995-1004. PubMed ID: 16492705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain.
    Kozielski F; Riaz T; DeBonis S; Koehler CJ; Kroening M; Panse I; Strozynski M; Donaldson IM; Thiede B
    Amino Acids; 2011 Jul; 41(2):363-85. PubMed ID: 20567863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. End binding protein-1 (EB1) complements microtubule-associated protein-1B during axonogenesis.
    Jiménez-Mateos EM; Paglini G; González-Billault C; Cáceres A; Avila J
    J Neurosci Res; 2005 May; 80(3):350-9. PubMed ID: 15789376
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and molecular cloning of Tetrahymena 138-kDa protein, a transcription elongation factor homologue that interacts with microtubules in vitro.
    Fujiu K; Numata O
    Biochem Biophys Res Commun; 2004 Feb; 315(1):196-203. PubMed ID: 15013445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.