These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 16207018)
1. Porphyrin gels reinforced by sol-gel reaction via the organogel phase. Kishida T; Fujita N; Sada K; Shinkai S Langmuir; 2005 Oct; 21(21):9432-9. PubMed ID: 16207018 [TBL] [Abstract][Full Text] [Related]
2. Sol-gel reaction of porphyrin-based superstructures in the organogel phase: creation of mechanically reinforced porphyrin hybrids. Kishida T; Fujita N; Sada K; Shinkai S J Am Chem Soc; 2005 May; 127(20):7298-9. PubMed ID: 15898763 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen-bond-assisted control of H versus J aggregation mode of porphyrins stacks in an organogel system. Shirakawa M; Kawano S; Fujita N; Sada K; Shinkai S J Org Chem; 2003 Jun; 68(13):5037-44. PubMed ID: 12816456 [TBL] [Abstract][Full Text] [Related]
4. Creation of double silica nanotubes by using crown-appended cholesterol nanotubes. Jung JH; Lee SH; Yoo JS; Yoshida K; Shimizu T; Shinkai S Chemistry; 2003 Nov; 9(21):5307-13. PubMed ID: 14613140 [TBL] [Abstract][Full Text] [Related]
5. Sol-gel polycondensation of tetraethyl orthosilicate (TEOS) in sugar-based porphyrin organogels: inorganic conversion of a sugar-directed porphyrinic fiber library through sol-gel transcription processes. Kawano S; Tamaru S; Fujita N; Shinkai S Chemistry; 2004 Jan; 10(2):343-51. PubMed ID: 14735502 [TBL] [Abstract][Full Text] [Related]
6. Porphyrin-based organogels: control of the aggregation mode by a pyridine-carboxylic acid interaction. Tanaka S; Shirakawa M; Kaneko K; Takeuchi M; Shinkai S Langmuir; 2005 Mar; 21(6):2163-72. PubMed ID: 15752003 [TBL] [Abstract][Full Text] [Related]
7. Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives. Yang H; Yi T; Zhou Z; Zhou Y; Wu J; Xu M; Li F; Huang C Langmuir; 2007 Jul; 23(15):8224-30. PubMed ID: 17580919 [TBL] [Abstract][Full Text] [Related]
8. Novel dimeric cholesteryl-based A(LS)2 low-molecular-mass gelators with a benzene ring in the linker. Xue M; Liu K; Peng J; Zhang Q; Fang Y J Colloid Interface Sci; 2008 Nov; 327(1):94-101. PubMed ID: 18774141 [TBL] [Abstract][Full Text] [Related]
9. [60]fullerene-motivated organogel formation in a porphyrin derivative bearing programmed hydrogen-bonding sites. Shirakawa M; Fujita N; Shinkai S J Am Chem Soc; 2003 Aug; 125(33):9902-3. PubMed ID: 12914435 [TBL] [Abstract][Full Text] [Related]
10. Studies on a new class of organogelator containing 2-anthracenecarboxylic acid: influence of gelator and solvent on stereochemistry of the photodimers. Dawn A; Fujita N; Haraguchi S; Sada K; Tamaru S; Shinkai S Org Biomol Chem; 2009 Nov; 7(21):4378-85. PubMed ID: 19830286 [TBL] [Abstract][Full Text] [Related]
11. Polycondensation and stabilization of chirally ordered molecular organogels derived from alkoxysilyl group- containing L-glutamide lipid. Takafuji M; Azuma N; Miyamoto K; Maeda S; Ihara H Langmuir; 2009 Aug; 25(15):8428-33. PubMed ID: 19292429 [TBL] [Abstract][Full Text] [Related]
12. Birefringent physical gels of N-(4-n-alkyloxybenzoyl)-L-alanine amphiphiles in organic solvents: the role of hydrogen-bonding. Patra T; Pal A; Dey J J Colloid Interface Sci; 2010 Apr; 344(1):10-20. PubMed ID: 20097349 [TBL] [Abstract][Full Text] [Related]
13. Solvent/gelator interactions and supramolecular structure of gel fibers in cyclic bis-urea/primary alcohol organogels. Jeong Y; Hanabusa K; Masunaga H; Akiba I; Miyoshi K; Sakurai S; Sakurai K Langmuir; 2005 Jan; 21(2):586-94. PubMed ID: 15641827 [TBL] [Abstract][Full Text] [Related]
14. Quater-, quinque-, and sexithiophene organogelators: unique thermochromism and heating-free sol-gel phase transition. Kawano S; Fujita N; Shinkai S Chemistry; 2005 Aug; 11(16):4735-42. PubMed ID: 15912544 [TBL] [Abstract][Full Text] [Related]
15. Transcription of chirality in the organogel systems dictates the enantiodifferentiating photodimerization of substituted anthracene. Dawn A; Shiraki T; Haraguchi S; Sato H; Sada K; Shinkai S Chemistry; 2010 Mar; 16(12):3676-89. PubMed ID: 20151438 [TBL] [Abstract][Full Text] [Related]
16. Morphology-controlled self-assembled nanostructures of 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction. Gao Y; Zhang X; Ma C; Li X; Jiang J J Am Chem Soc; 2008 Dec; 130(50):17044-52. PubMed ID: 19007122 [TBL] [Abstract][Full Text] [Related]
17. Axial coordination changes the morphology of porphyrin assemblies in an organogel system. Kishida T; Fujita N; Hirata O; Shinkai S Org Biomol Chem; 2006 May; 4(10):1902-9. PubMed ID: 16688336 [TBL] [Abstract][Full Text] [Related]
18. Spectral characterization of self-assemblies of aldopyranoside amphiphilic gelators: what is the essential structural difference between simple amphiphiles and bolaamphiphiles? Jung JH; Shinkai S; Shimizu T Chemistry; 2002 Jun; 8(12):2684-90. PubMed ID: 12391645 [TBL] [Abstract][Full Text] [Related]
19. Reversible sol-gel transition of oligo(p-phenylenevinylene)s by π-π stacking and dissociation. Yao C; Lu Q; Wang X; Wang F J Phys Chem B; 2014 May; 118(17):4661-8. PubMed ID: 24702243 [TBL] [Abstract][Full Text] [Related]
20. [Sol-gel preparation of ultrathin nano-hydroxyapatite coating and its characterization]. Yang J; Guo L; Li H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1075-9. PubMed ID: 17121358 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]