These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16207175)

  • 1. Computational evidence for protein-mediated fatty acid transport across the sarcolemma.
    Musters MW; Bassingthwaighte JB; van Riel NA; van der Vusse GJ
    Biochem J; 2006 Feb; 393(Pt 3):669-78. PubMed ID: 16207175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical steps in cellular fatty acid uptake and utilization.
    van der Vusse GJ; van Bilsen M; Glatz JF; Hasselbaink DM; Luiken JJ
    Mol Cell Biochem; 2002 Oct; 239(1-2):9-15. PubMed ID: 12479563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarcolemmal fatty acid transfer in isolated cardiomyocytes governed by albumin/membrane-lipid partition.
    Rose H; Hennecke T; Kammermeier H
    J Mol Cell Cardiol; 1990 Aug; 22(8):883-92. PubMed ID: 2172557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of sarcolemmal transport of substrates in the healthy and diseased heart.
    Glatz JF; Bonen A; Ouwens DM; Luiken JJ
    Cardiovasc Drugs Ther; 2006 Dec; 20(6):471-6. PubMed ID: 17119873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting.
    Kleinfeld AM; Chu P; Romero C
    Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of long chain fatty acid transport in cardiomyocytes as facilitated by cytoplasmic fatty acid-binding protein.
    Vork MM; Glatz JF; Van Der Vusse GJ
    J Theor Biol; 1993 Jan; 160(2):207-22. PubMed ID: 8474251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acid flip-flop in a model membrane is faster than desorption into the aqueous phase.
    Simard JR; Pillai BK; Hamilton JA
    Biochemistry; 2008 Sep; 47(35):9081-9. PubMed ID: 18693753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-cardiac transfer of fatty acids from capillary to cardiomyocyte.
    van der Vusse GJ; Arts T; Bassingthwaighte JB; Reneman RS
    PLoS One; 2022; 17(1):e0261288. PubMed ID: 35089937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of membrane-associated proteins in the acute regulation of cellular fatty acid uptake.
    Glatz JF; Luiken JJ; Bonen A
    J Mol Neurosci; 2001; 16(2-3):123-32; discussion 151-7. PubMed ID: 11478367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Fatty Acid Transfer from Artery to Cardiomyocyte.
    Arts T; Reneman RS; Bassingthwaighte JB; van der Vusse GJ
    PLoS Comput Biol; 2015 Dec; 11(12):e1004666. PubMed ID: 26675003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of long-chain native fatty acids across human erythrocyte ghost membranes.
    Kleinfeld AM; Storms S; Watts M
    Biochemistry; 1998 Jun; 37(22):8011-9. PubMed ID: 9609694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cAMP modulators on long-chain fatty-acid uptake and utilization by electrically stimulated rat cardiac myocytes.
    Luiken JJ; Willems J; Coort SL; Coumans WA; Bonen A; Van Der Vusse GJ; Glatz JF
    Biochem J; 2002 Nov; 367(Pt 3):881-7. PubMed ID: 12093365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: involvement of sarcolemmal proteins.
    Luiken JJ; van Nieuwenhoven FA; America G; van der Vusse GJ; Glatz JF
    J Lipid Res; 1997 Apr; 38(4):745-58. PubMed ID: 9144089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flip-flop is slow and rate limiting for the movement of long chain anthroyloxy fatty acids across lipid vesicles.
    Kleinfeld AM; Chu P; Storch J
    Biochemistry; 1997 May; 36(19):5702-11. PubMed ID: 9153410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of caveolin-1 and cholesterol in transmembrane fatty acid movement.
    Meshulam T; Simard JR; Wharton J; Hamilton JA; Pilch PF
    Biochemistry; 2006 Mar; 45(9):2882-93. PubMed ID: 16503643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid transport: the diffusion mechanism in model and biological membranes.
    Hamilton JA; Johnson RA; Corkey B; Kamp F
    J Mol Neurosci; 2001; 16(2-3):99-108; discussion 151-7. PubMed ID: 11478390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of fatty acid transport by fatty acid translocase/CD36.
    Bonen A; Campbell SE; Benton CR; Chabowski A; Coort SL; Han XX; Koonen DP; Glatz JF; Luiken JJ
    Proc Nutr Soc; 2004 May; 63(2):245-9. PubMed ID: 15294038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of heart sarcolemmal calcium transport system and effect of protein kinase on sarcolemmal calcium accumulation.
    Sulakhe PV; St Louis PJ
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():241-7. PubMed ID: 201983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sarcolemmal fatty acid uptake vs. mitochondrial beta-oxidation as target to regress cardiac insulin resistance.
    Luiken JJ
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):473-80. PubMed ID: 19448717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of FATP in parenchymal cell fatty acid uptake.
    Pohl J; Ring A; Hermann T; Stremmel W
    Biochim Biophys Acta; 2004 Nov; 1686(1-2):1-6. PubMed ID: 15522816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.