BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16207493)

  • 1. Biomechanical model for appressorial design in Magnaporthe grisea.
    Tongen A; Goriely A; Tabor M
    J Theor Biol; 2006 May; 240(1):1-8. PubMed ID: 16207493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimates of biomechanical forces in Magnaporthe grisea.
    Goriely A; Tabor M
    Mycol Res; 2006 Jul; 110(Pt 7):755-9. PubMed ID: 16876695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus.
    Park G; Bruno KS; Staiger CJ; Talbot NJ; Xu JR
    Mol Microbiol; 2004 Sep; 53(6):1695-707. PubMed ID: 15341648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection.
    Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ
    Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea.
    Zheng W; Zhao Z; Chen J; Liu W; Ke H; Zhou J; Lu G; Darvill AG; Albersheim P; Wu S; Wang Z
    Fungal Genet Biol; 2009; 46(6-7):450-60. PubMed ID: 19298860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of infection of the rice blast fungus by halisulfate 1, an isocitrate lyase inhibitor.
    Shin DS; Lee TH; Lee HS; Shin J; Oh KB
    FEMS Microbiol Lett; 2007 Jul; 272(1):43-7. PubMed ID: 17456183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea.
    Howard RJ; Valent B
    Annu Rev Microbiol; 1996; 50():491-512. PubMed ID: 8905089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea.
    Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC
    Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae.
    Dagdas YF; Yoshino K; Dagdas G; Ryder LS; Bielska E; Steinberg G; Talbot NJ
    Science; 2012 Jun; 336(6088):1590-5. PubMed ID: 22723425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autophagic fungal cell death is necessary for infection by the rice blast fungus.
    Veneault-Fourrey C; Barooah M; Egan M; Wakley G; Talbot NJ
    Science; 2006 Apr; 312(5773):580-3. PubMed ID: 16645096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence.
    Skamnioti P; Gurr SJ
    Plant Cell; 2007 Aug; 19(8):2674-89. PubMed ID: 17704215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea.
    Donofrio NM; Oh Y; Lundy R; Pan H; Brown DE; Jeong JS; Coughlan S; Mitchell TK; Dean RA
    Fungal Genet Biol; 2006 Sep; 43(9):605-17. PubMed ID: 16731015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi.
    Sesma A; Osbourn AE
    Nature; 2004 Sep; 431(7008):582-6. PubMed ID: 15457264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization.
    Kim S; Ahn IP; Rho HS; Lee YH
    Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene.
    Kang S; Lebrun MH; Farrall L; Valent B
    Mol Plant Microbe Interact; 2001 May; 14(5):671-4. PubMed ID: 11332731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fertility status and distribution of mating type alleles of the rice blast fungus, Magnaporthe grisea in northern Iran.
    Hemmati R; Javan-Nikkhahi M; Hedjaroude GA; Okhovvat SM; Moosanejad S
    Commun Agric Appl Biol Sci; 2004; 69(4):537-9. PubMed ID: 15756836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. REMI mutagenesis and identification of pathogenic mutants in blast fungus (Magnaporthe grisea).
    Liu S; Wei R; Arie T; Yamaguchi I
    Chin J Biotechnol; 1998; 14(3):133-9. PubMed ID: 10503072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. G protein regulation of disease resistance during infection of rice with rice blast fungus.
    Assmann SM
    Sci STKE; 2005 Nov; 2005(310):cm13. PubMed ID: 16291770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascherxanthone B from Aschersonia luteola, a new antifungal compound active against rice blast pathogen Magnaporthe grisea.
    Chutrakul C; Boonruangprapa T; Suvannakad R; Isaka M; Sirithunya P; Toojinda T; Kirtikara K
    J Appl Microbiol; 2009 Nov; 107(5):1624-31. PubMed ID: 19457038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The assessment of the rice cultivars/lines resistance to blast disease in Mazandaran province, Iran.
    Amanzadeh M; Okhovvat SM; Moumeni A; Javan-Nikkhah M; Khosravi V
    Commun Agric Appl Biol Sci; 2004; 69(4):667-70. PubMed ID: 15756856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.