These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro. Wang S; Yang X; Lin Y; Qiu X; Li H; Zhao X; Cao L; Liu X; Pang Y; Wang X; Chi Z Brain Res; 2013 Oct; 1535():14-23. PubMed ID: 23994215 [TBL] [Abstract][Full Text] [Related]
10. AG-690/11026014, a novel PARP-1 inhibitor, protects cardiomyocytes from AngII-induced hypertrophy. Liu M; Li Z; Chen GW; Li ZM; Wang LP; Ye JT; Luo HB; Liu PQ Mol Cell Endocrinol; 2014 Jul; 392(1-2):14-22. PubMed ID: 24859603 [TBL] [Abstract][Full Text] [Related]
11. Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Cantó C; Sauve AA; Bai P Mol Aspects Med; 2013 Dec; 34(6):1168-201. PubMed ID: 23357756 [TBL] [Abstract][Full Text] [Related]
12. Modulation of DNA fragmentation factor 40 nuclease activity by poly(ADP-ribose) polymerase-1. West JD; Ji C; Marnett LJ J Biol Chem; 2005 Apr; 280(15):15141-7. PubMed ID: 15703174 [TBL] [Abstract][Full Text] [Related]
13. Histone H2A.z is essential for cardiac myocyte hypertrophy but opposed by silent information regulator 2alpha. Chen IY; Lypowy J; Pain J; Sayed D; Grinberg S; Alcendor RR; Sadoshima J; Abdellatif M J Biol Chem; 2006 Jul; 281(28):19369-77. PubMed ID: 16687393 [TBL] [Abstract][Full Text] [Related]
14. Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Yang KT; Chang WL; Yang PC; Chien CL; Lai MS; Su MJ; Wu ML Cell Death Differ; 2006 Oct; 13(10):1815-26. PubMed ID: 16294211 [TBL] [Abstract][Full Text] [Related]
15. Minocycline protects cardiac myocytes against simulated ischemia–reperfusion injury by inhibiting poly(ADP-ribose) polymerase-1. Tao R; Kim SH; Honbo N; Karliner JS; Alano CC J Cardiovasc Pharmacol; 2010 Dec; 56(6):659-68. PubMed ID: 20881608 [TBL] [Abstract][Full Text] [Related]
16. PARP-1 inhibition does not restore oxidant-mediated reduction in SIRT1 activity. Caito S; Hwang JW; Chung S; Yao H; Sundar IK; Rahman I Biochem Biophys Res Commun; 2010 Feb; 392(3):264-70. PubMed ID: 20060806 [TBL] [Abstract][Full Text] [Related]
17. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. Sakamoto J; Miura T; Shimamoto K; Horio Y FEBS Lett; 2004 Jan; 556(1-3):281-6. PubMed ID: 14706864 [TBL] [Abstract][Full Text] [Related]
18. NAD+ as a metabolic link between DNA damage and cell death. Ying W; Alano CC; Garnier P; Swanson RA J Neurosci Res; 2005 Jan 1-15; 79(1-2):216-23. PubMed ID: 15562437 [TBL] [Abstract][Full Text] [Related]
19. Activation of poly(ADP-ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. Nagayama T; Simon RP; Chen D; Henshall DC; Pei W; Stetler RA; Chen J J Neurochem; 2000 Apr; 74(4):1636-45. PubMed ID: 10737622 [TBL] [Abstract][Full Text] [Related]
20. Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? Zhang J Bioessays; 2003 Aug; 25(8):808-14. PubMed ID: 12879452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]