These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16207886)

  • 41. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Curr Opin Neurobiol; 2006 Aug; 16(4):451-9. PubMed ID: 16837188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity.
    Mower AF; Liao DS; Nestler EJ; Neve RL; Ramoa AS
    J Neurosci; 2002 Mar; 22(6):2237-45. PubMed ID: 11896163
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex.
    Mower GD; Caplan CJ; Christen WG; Duffy FH
    J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity.
    Toyoizumi T; Miyamoto H; Yazaki-Sugiyama Y; Atapour N; Hensch TK; Miller KD
    Neuron; 2013 Oct; 80(1):51-63. PubMed ID: 24094102
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Persistent cortical plasticity by upregulation of chondroitin 6-sulfation.
    Miyata S; Komatsu Y; Yoshimura Y; Taya C; Kitagawa H
    Nat Neurosci; 2012 Jan; 15(3):414-22, S1-2. PubMed ID: 22246436
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex.
    Kuhlman SJ; Olivas ND; Tring E; Ikrar T; Xu X; Trachtenberg JT
    Nature; 2013 Sep; 501(7468):543-6. PubMed ID: 23975100
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cortical activity blockade prevents ocular dominance plasticity in the kitten visual cortex.
    Reiter HO; Waitzman DM; Stryker MP
    Exp Brain Res; 1986; 65(1):182-8. PubMed ID: 3803504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protein synthesis-independent plasticity mediates rapid and precise recovery of deprived eye responses.
    Krahe TE; Medina AE; de Bittencourt-Navarrete RE; Colello RJ; Ramoa AS
    Neuron; 2005 Oct; 48(2):329-43. PubMed ID: 16242412
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sleep on it: cortical reorganization after-the-fact.
    Hoffman KL; McNaughton BL
    Trends Neurosci; 2002 Jan; 25(1):1-2. PubMed ID: 11801320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unmasking Proteolytic Activity for Adult Visual Cortex Plasticity by the Removal of Lynx1.
    Bukhari N; Burman PN; Hussein A; Demars MP; Sadahiro M; Brady DM; Tsirka SE; Russo SJ; Morishita H
    J Neurosci; 2015 Sep; 35(37):12693-702. PubMed ID: 26377459
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The critical period for ocular dominance plasticity in the Ferret's visual cortex.
    Issa NP; Trachtenberg JT; Chapman B; Zahs KR; Stryker MP
    J Neurosci; 1999 Aug; 19(16):6965-78. PubMed ID: 10436053
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of different forms of monocular deprivation on primary visual cortex maps.
    Jaffer S; Vorobyov V; Sengpiel F
    Vis Neurosci; 2012 Sep; 29(4-5):247-53. PubMed ID: 22882840
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Experience-dependent regulation of functional maps and synaptic protein expression in the cat visual cortex.
    Jaffer S; Vorobyov V; Kind PC; Sengpiel F
    Eur J Neurosci; 2012 Apr; 35(8):1281-94. PubMed ID: 22512257
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid ocular dominance plasticity requires cortical but not geniculate protein synthesis.
    Taha S; Stryker MP
    Neuron; 2002 Apr; 34(3):425-36. PubMed ID: 11988173
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity.
    Lazarus MS; Huang ZJ
    J Neurophysiol; 2011 Aug; 106(2):775-87. PubMed ID: 21613595
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neonatal alcohol exposure induces long-lasting impairment of visual cortical plasticity in ferrets.
    Medina AE; Krahe TE; Coppola DM; Ramoa AS
    J Neurosci; 2003 Nov; 23(31):10002-12. PubMed ID: 14602814
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.