These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16208536)

  • 21. Role of skeletal muscle in palate development.
    Rot I; Kablar B
    Histol Histopathol; 2013 Jan; 28(1):1-13. PubMed ID: 23233055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of acoustic and static stimuli on development of inner ear sensory epithelia.
    Rot I; Kablar B
    Int J Dev Neurosci; 2010 Jun; 28(4):309-15. PubMed ID: 20188812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted inactivation of myogenic factor genes reveals their role during mouse myogenesis: a review.
    Arnold HH; Braun T
    Int J Dev Biol; 1996 Feb; 40(1):345-53. PubMed ID: 8735947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myogenic waves and myogenic programs during Xenopus embryonic myogenesis.
    Della Gaspera B; Armand AS; Sequeira I; Chesneau A; Mazabraud A; Lécolle S; Charbonnier F; Chanoine C
    Dev Dyn; 2012 May; 241(5):995-1007. PubMed ID: 22434732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myogenic regulatory factors Myf5 and Myod function distinctly during craniofacial myogenesis of zebrafish.
    Lin CY; Yung RF; Lee HC; Chen WT; Chen YH; Tsai HJ
    Dev Biol; 2006 Nov; 299(2):594-608. PubMed ID: 17007832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myostatin and MyoD family expression in skeletal muscle of IGF-1 knockout mice.
    Miyake M; Hayashi S; Sato T; Taketa Y; Watanabe K; Hayashi S; Tanaka S; Ohwada S; Aso H; Yamaguchi T
    Cell Biol Int; 2007 Oct; 31(10):1274-9. PubMed ID: 17590360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential responses to the application of exogenous NT-3 are observed for subpopulations of motor and sensory neurons depending on the presence of skeletal muscle.
    Angka HE; Kablar B
    Dev Dyn; 2007 May; 236(5):1193-202. PubMed ID: 17436272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos.
    Pownall ME; Gustafsson MK; Emerson CP
    Annu Rev Cell Dev Biol; 2002; 18():747-83. PubMed ID: 12142270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Induced early expression of mrf4 but not myog rescues myogenesis in the myod/myf5 double-morphant zebrafish embryo.
    Schnapp E; Pistocchi AS; Karampetsou E; Foglia E; Lamia CL; Cotelli F; Cossu G
    J Cell Sci; 2009 Feb; 122(Pt 4):481-8. PubMed ID: 19193870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of retinal cell fates is affected in the absence of extraocular striated muscles.
    Kablar B
    Dev Dyn; 2003 Mar; 226(3):478-90. PubMed ID: 12619134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression and variation of Myf5 and MyoD1 genes in different tissues of Wuzhishan pigs.
    Hou GY; Zhou HL; Cao T; Xun WJ; Wang DJ; Shi LG; Guan S; Wang DF; Li M
    Genet Mol Res; 2015 Apr; 14(2):3729-35. PubMed ID: 25966141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Humanized skeletal muscle in MYF5/MYOD/MYF6-null pig embryos.
    Maeng G; Das S; Greising SM; Gong W; Singh BN; Kren S; Mickelson D; Skie E; Gafni O; Sorensen JR; Weaver CV; Garry DJ; Garry MG
    Nat Biomed Eng; 2021 Aug; 5(8):805-814. PubMed ID: 33782573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells.
    Gayraud-Morel B; Chrétien F; Jory A; Sambasivan R; Negroni E; Flamant P; Soubigou G; Coppée JY; Di Santo J; Cumano A; Mouly V; Tajbakhsh S
    J Cell Sci; 2012 Apr; 125(Pt 7):1738-49. PubMed ID: 22366456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans.
    McKay BR; O'Reilly CE; Phillips SM; Tarnopolsky MA; Parise G
    J Physiol; 2008 Nov; 586(22):5549-60. PubMed ID: 18818249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.
    Zhang P; Liang X; Shan T; Jiang Q; Deng C; Zheng R; Kuang S
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):102-8. PubMed ID: 25998386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Skeletal muscle precursors in mouse esophagus are determined during early fetal development.
    Zhao W; Dhoot GK
    Dev Dyn; 2000 Sep; 219(1):10-20. PubMed ID: 10974667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Related expression of MyoD and Myf5 with myosin heavy chain isoform types in bovine adult skeletal muscles.
    Muroya S; Nakajima I; Chikuni K
    Zoolog Sci; 2002 Jul; 19(7):755-61. PubMed ID: 12149576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis.
    Noden DM; Marcucio R; Borycki AG; Emerson CP
    Dev Dyn; 1999 Oct; 216(2):96-112. PubMed ID: 10536051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular distinction between specification and differentiation in the myogenic basic helix-loop-helix transcription factor family.
    Bergstrom DA; Tapscott SJ
    Mol Cell Biol; 2001 Apr; 21(7):2404-12. PubMed ID: 11259589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MyoD cannot compensate for the absence of myogenin during skeletal muscle differentiation in murine embryonic stem cells.
    Myer A; Olson EN; Klein WH
    Dev Biol; 2001 Jan; 229(2):340-50. PubMed ID: 11203698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.